Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of space telescopes in the characterization of transiting exoplanets


Characterization studies now have a dominant role in the field of exoplanets. Such studies include the measurement of an exoplanet's bulk density, its brightness temperature and the chemical composition of its atmosphere. The use of space telescopes has played a key part in the characterization of transiting exoplanets. These facilities offer astronomers data of exquisite precision and temporal sampling as well as access to wavelength regions of the electromagnetic spectrum that are inaccessible from the ground. Space missions such as the Hubble Space Telescope, Microvariability and Oscillations of Stars (MOST), Spitzer Space Telescope, Convection, Rotation and Planetary Transits (CoRoT), and Kepler have rapidly advanced our knowledge of the physical properties of exoplanets and have blazed a trail for a series of future space missions that will help us to understand the observed diversity of exoplanets.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mass–density diagram for the CoRoT giant planets.
Figure 2: Spitzer light curve for HD 189733.


  1. 1

    Baglin, A. The CoRoT satellite in flight: description and performance. Adv. Space Res. 31, 345–349 (2003).

    ADS  Article  Google Scholar 

  2. 2

    Deleuil, M. et al. Transiting exoplanets from the CoRoT space mission. XX. CoRoT-20b: a very high density, high eccentricity transiting giant planet. Astron. Astrophys. 538, A145 (2012).

    Article  Google Scholar 

  3. 3

    Alonso, R. et al. Transiting exoplanets from the CoRoT space mission. II. CoRoT0-Exo-2b: a transiting planet around an active G star. Astron. Astrophys. 482, L21 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Walker, G. A. H. et al. MOST detects variability on τ Bootis a possibly induced by its planetary companion. Astron. Astrophys. 482, 691 (2008).

    CAS  ADS  Article  Google Scholar 

  5. 5

    Deeg, H. J. et al. A transiting giant planet with a temperature between 250 K and 430 K. Nature 464, 384–387 (2010).

    CAS  ADS  Article  Google Scholar 

  6. 6

    Demory, B.-O. & Seager, S. Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. Astrophys. J. 197 (Suppl.), 12 (2011).

    Article  Google Scholar 

  7. 7

    Deleuil, M. et al. Transiting exoplanets from the CoRoT space mission. VI. CoRoT-Exo-3b: the first secure inhabitant of the drown-dwarf desert. Astron. Astrophys. 491, 889 (2008).

    ADS  Article  Google Scholar 

  8. 8

    Leger, A. et al. Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius. Astron. Astrophys. 586, 278 (2009). This paper reports the discovery of the first transiting rocky super-Earth exoplanet.

    Google Scholar 

  9. 9

    Hatzes, A. P. et al. The mass of CoRoT-7b. Astrophys. J. 743, 75 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Batalha, N. et al. Kepler's first rocky planet. Astrophys. J. 729, 27 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Sanchis-Ojeda, R. et al. Transits and occultations of an Earth-sized planet in an 8.5-hour orbit. Astrophys. J. 774, 54 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Howard, A. W. et al. A rocky composition for an Earth-sized exoplanet. Nature 503, 381–384 (2013).

    CAS  ADS  Article  Google Scholar 

  13. 13

    Pepe, F. et al. An Earth-sized planet with an Earth-like density. Nature 503, 377–380 (2013). Together with ref. 12, this paper reports the discovery of the first transiting rocky Earth-sized exoplanet.

    CAS  ADS  Article  Google Scholar 

  14. 14

    Rowe, J. et al. The very low albedo of an extrasolar planet: MOST space-based photometry of HD 209458. Astrophys. J. 689, 1345 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Winn, J. N. et al. A super-Earth transiting a naked-eye star. Astrophys. J. 737, L18 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W. & Burrows, A. Hubble Space Telescope time series photometry of the transiting planet of HD 202458. Astrophys. J. 552, 699 (2001).

    ADS  Article  Google Scholar 

  17. 17

    Charbonneau, D., Brown, T. M., Noyes, R. W. & Gilliland, R. L. Detection of an extrasolar planetary atmosphere. Astrophys. J. 568, 377 (2002).

    CAS  ADS  Article  Google Scholar 

  18. 18

    Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD 209458b. Nature 422, 143–146 (2003).

    CAS  ADS  Article  Google Scholar 

  19. 19

    Vidal-Madjar, A. et al. Magnesium in the atmosphere of the planet HD209458 b: observations of the thermosphere-exosphere transition region. Astron. Astrophys. 560, A54 (2013).

    Article  Google Scholar 

  20. 20

    Ben-Jaffel, L. & Ballester, G. E. Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b. Astron. Astrophys. 553, A52 (2013).

    ADS  Article  Google Scholar 

  21. 21

    Swain. M.R. et al. Water, methane, and carbon dioxide present in the dayside spectrum of the exoplanet HD 209458b. Astrophys. J. 704, 1616 (2009)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Swain, M. R., Vasisht, G. & Tinetti, G. The presence of methane in the atmosphere of an extrasolar planet. Nature 452, 329–331 (2008).

    CAS  ADS  Article  Google Scholar 

  23. 23

    Gibson, N. P., Pont, F. & Aigrain, S. A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features. Mon. Not. R. Astron. Soc. 411, 2199 (2011).

    CAS  ADS  Article  Google Scholar 

  24. 24

    Csizmadia, S. Pasternacki, Th., Dreyer, C., Cabrera, J., Erikson, A., Rauer, H. The effect of stellar limb darkening values on the accuracy of the planet radii derived from photometric transit observations. Astron. Astrophys. 549, A9 (2013).

    ADS  Article  Google Scholar 

  25. 25

    Pont, F. et al. The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations. Mon. R. Astron. Soc. 432, 2917 (2013).

    ADS  Article  Google Scholar 

  26. 26

    Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b. Nature 505, 69 (2014).

    ADS  Article  Google Scholar 

  27. 27

    Knutson, H. A., Benneke, B., Deming, D. & Homeier, D. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b. Nature 505, 66–68 (2014).

    ADS  Article  Google Scholar 

  28. 28

    Knutson, H. A. et al. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007). This paper documents the first brightness map of an exoplanet.

    CAS  ADS  Article  Google Scholar 

  29. 29

    Snellen, I. A. G. de Mooij. Ernst, J.W. & Albrecht, S. The changing phases of extrasolar planet CoRoT-1b. Nature 459, 543–545 (2009).

    CAS  ADS  Article  Google Scholar 

  30. 30

    Sudarsky, D., Burrows, A. & Hunbeny, I. Theoretical spectra and atmospheres of extrasolar giant planets. Astrophys. J. 588, 1121 (2003).

    CAS  ADS  Article  Google Scholar 

  31. 31

    Demory, B.-O. et al. The high albedo of the Hot Jupiter Kepler-7b. Astrophys. J. 197, 12 (2011).

    Article  Google Scholar 

  32. 32

    Demory, B.-O. et al. Detection of a transit of the super-Earth 55 Cancri e with Warm Spitzer. Astron. Astrophys. 533, A114 (2011).

    Article  Google Scholar 

  33. 33

    Demory, B.-O. et al. Detection of a thermal emission from a super-Earth. Astrophys. J. 751, L28 (2012).

    ADS  Article  Google Scholar 

  34. 34

    Rauer, H. et al. The PLATO 2.0 Mission. Exp. Astron. (submitted); preprint at (2014).

Download references


The author would like to warmly thank H. Rauer, J. Cabrera and S. Csizmadia for their valuable comments.

Author information



Corresponding author

Correspondence to Artie P. Hatzes.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatzes, A. The role of space telescopes in the characterization of transiting exoplanets. Nature 513, 353–357 (2014).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing