Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances in exoplanet science from Kepler

Abstract

Numerous telescopes and techniques have been used to find and study extrasolar planets, but none has been more successful than NASA's Kepler space telescope. Kepler has discovered most of the known exoplanets, the smallest planets to orbit normal stars and the planets most likely to be similar to Earth. Most importantly, Kepler has provided us with our first look at the typical characteristics of planets and planetary systems for planets with sizes as small as, and orbits as large as, those of Earth.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Orbital period against planetary radius for planetary candidates.
Figure 2: Mass–radius plot for transiting exoplanets with measured masses less than 20 ME, with the model curves for different compositions.
Figure 3: Plausible compositions of the small and mid-sized planets observed by Kepler.
Figure 4: Separations of nearest neighbours in the Kepler multi-planet systems, measured in Hill radii.

References

  1. Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010). This is the primary paper describing the Kepler mission, its goals and first planetary discoveries.

    ADS  CAS  Google Scholar 

  2. Koch, D. G. et al. Kepler mission design, realized photometric performance, and early science. Astrophys. J. 713, L79–L86 (2010). This article provides a description of the spacecraft, how the hardware relates to the scientific goals of the mission, and early technical performance.

    ADS  CAS  Google Scholar 

  3. Gilliland, R. L. et al. Kepler mission stellar and instrument noise properties. Astrophys. J. Suppl. 197, 6 (2011).

    ADS  Google Scholar 

  4. Batalha, N. M. et al. Kepler's first rocky planet: Kepler-10b. Astrophys. J. 729, 27 (2011).

    ADS  Google Scholar 

  5. Lissauer, J. J. et al. A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470, 53–58 (2011). This paper reports the first flat, tightly packed, close-in planetary system and the first small planets found with low densities.

    ADS  CAS  Google Scholar 

  6. Doyle, L. R. et al. Kepler-16: a transiting circumbinary planet. Science 333, 1602–1606 (2011). This article describes the first transiting circumbinary planet.

    ADS  CAS  Google Scholar 

  7. Carter, J. A. et al. Kepler-36: A pair of planets with neighboring orbits and dissimilar densities. Science 337, 556–559 (2012). The authors of this article describe a system of two planets with very different densities on remarkably close orbits that is precisely characterized using TTVs.

    ADS  CAS  Google Scholar 

  8. Jontof-Hutter, D., Lissauer, J. J., Rowe, J. F. & Fabrycky, D. C. Kepler-79's low density planets. Astrophys. J. 785, 15 (2014).

    ADS  Google Scholar 

  9. Marcy, G. W. et al. Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. Astrophys. J. Suppl. 210, 20 (2014). This paper describes the masses of dozens of small Kepler planets using radial velocities measured at the Keck Observatory.

    ADS  Google Scholar 

  10. Fortney, J. J., Marley, M. S. & Barnes, J. W. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007).

    ADS  CAS  Google Scholar 

  11. Dressing, C. D. & Charbonneau, D. The occurrence rate of small planets around small stars. Astrophys. J. 767, 95 (2013).

    ADS  Google Scholar 

  12. Fischer, D. A. & Valenti, J. The planet-metallicity correlation. Astrophys. J. 622, 1102–1117 (2005).

    ADS  CAS  Google Scholar 

  13. Sousa, S. G., Santos, N. C., Israelian, G., Mayor, M. & Udry, S. Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. Astron. Astrophys. 533, A141 (2011).

    ADS  Google Scholar 

  14. Buchhave, L. A. et al. An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486, 375–377 (2012). This article demonstrates that the occurrence rate of small planets does not depend strongly on the chemical composition of the star.

    ADS  CAS  Google Scholar 

  15. Wang, J. & Fischer, D. A. The metal-rich stars get richer in planets for all but planets with RP ≤2 RE. Preprint at http://arxiv.org/abs/1310.7830 (2013).

  16. Ricker, G. R. et al. The Transiting Exoplanet Survey Satellite mission. J. Am. Assoc. Variable Star Observers 42, 234 (2014).

    ADS  Google Scholar 

  17. Demory, B.-O. The albedos of Kepler's close-in super-Earths. Astrophys. J. 789, L20 (2014).

    ADS  Google Scholar 

  18. Angerhausen, D., DeLarme, E. & Morse, J. A. A comprehensive study of Kepler phase curves and secondary eclipses — temperatures and albedos of confirmed Kepler giant planets. Preprint at http://arxiv.org/abs/1404.4348 (2014).

  19. Holman, M. J. et al. Kepler-9: a system of multiple planets transiting a Sun-like star, confirmed by timing variations. Science 330, 51–54 (2010).

    ADS  CAS  Google Scholar 

  20. Lissauer, J. J. et al. All six planets known to orbit Kepler-11 have low densities. Astrophys. J. 770, 131 (2013).

    ADS  Google Scholar 

  21. Dreizler, S. & Ofir, A. Kepler-9 revisited 60% the mass with six times more data. http://arxiv.org/abs/1403.1372 (2014).

  22. Borucki, W. J. et al. Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. Astrophys. J. 736, 19 (2011). This is the first major catalogue of Kepler's planet candidates.

    ADS  Google Scholar 

  23. Batalha, N. M. et al. Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. Astrophys. J. Suppl. 204, 24 (2013). This is the second major catalogue of Kepler's planet candidates.

    ADS  Google Scholar 

  24. Burke, C. J. et al. Planetary candidates observed by Kepler IV: planet sample from Q1–Q8 (22 months). Astrophys. J. Suppl. 210, 19 (2014). This is the third major catalogue of Kepler's planet candidates.

    ADS  Google Scholar 

  25. Batalha, N. M. et al. Pre-spectroscopic false-positive elimination of Kepler planet candidates. Astrophys. J. 713, L103–L108 (2010).

    ADS  Google Scholar 

  26. Morton, T. D. & Johnson, J. A. On the low false positive probabilities of Kepler planet candidates. Astrophys. J. 738, 170 (2011).

    ADS  Google Scholar 

  27. Santerne, A. et al. SOPHIE velocimetry of Kepler transit candidates. VII. A false-positive rate of 35% for Kepler close-in giant candidates. Astron. Astrophys. 545, A76 (2012).

    Google Scholar 

  28. Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013). This paper estimates false-positive rates in Kepler catalogues and calculates planetary occurrence rates.

    ADS  Google Scholar 

  29. Fischer, D. A. et al. Planet hunters: the first two planet candidates identified by the public using the Kepler public archive data. Mon. Not. R. Astron. Soc. 419, 2900–2911 (2012).

    ADS  Google Scholar 

  30. Sanchis-Ojeda, R. et al. A study of the shortest-period planets found with Kepler. Astrophys. J. 787, 47 (2014). This is a catalogue of Kepler planet candidates with an orbital period <1 day.

    ADS  Google Scholar 

  31. Torres, G. et al. Modeling Kepler transit light curves as false positives: rejection of blend scenarios for Kepler-9, and validation of Kepler-9d, a super-Earth-size planet in a multiple system. Astrophys. J. 727, 24 (2011).

    ADS  Google Scholar 

  32. Morton, T. D. An efficient automated validation procedure for exoplanet transit candidates. Astrophys. J. 761, 6 (2012).

    ADS  Google Scholar 

  33. Lissauer, J. J. et al. Validation of Kepler's multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest. Astrophys. J. 784, 44 (2014).

    ADS  Google Scholar 

  34. Ballard, S. et al. The Kepler-19 system: a transiting 2.2 R planet and a second planet detected via transit timing variations. Astrophys. J. 743, 200 (2011).

    ADS  Google Scholar 

  35. Nesvorny, D. et al. The detection and characterization of a nontransiting planet by transit timing variations. Science 336, 1133–1136 (2012).

    ADS  CAS  Google Scholar 

  36. Lopez, E. D. & Fortney, J. J. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013).

    ADS  Google Scholar 

  37. Deck, K. M. et al. Rapid dynamical chaos in an exoplanetary system. Astrophys. J. Lett. 755, L21 (2012); erratum 774, L15 (2013).

    ADS  Google Scholar 

  38. Winn, J. N. et al. Spin-orbit alignment for the circumbinary planet host Kepler-16 A. Astrophys. J. 741, L1 (2011).

    ADS  Google Scholar 

  39. Orosz, J. A. et al. Kepler-47: a transiting circumbinary multiplanet system. Science 337, 1511–1514 (2012).

    ADS  CAS  Google Scholar 

  40. Fressin, F. et al. Two Earth-sized planets orbiting Kepler-20. Nature 482, 195–198 (2012).

    ADS  CAS  Google Scholar 

  41. Muirhead, P. S. et al. Characterizing the cool KOIs. III. KOI 961: a small star with large proper motion and three small planets. Astrophys. J. 747, 144 (2012).

    ADS  Google Scholar 

  42. Barclay, T. et al. A sub-mercury-sized exoplanet. Nature 494, 452–454 (2013).

    ADS  CAS  Google Scholar 

  43. Rappaport, S. et al. Possible disintegrating short-period super-mercury orbiting KIC 12557548. Astrophys. J. 752, 1 (2012).

    ADS  Google Scholar 

  44. Sanchis-Ojeda, R. et al. Transits and occultations of an Earth-sized planet in an 8.5 hr orbit. Astrophys. J. 774, 54 (2013).

    ADS  Google Scholar 

  45. Howard, A. W. et al. A rocky composition for an Earth-sized exoplanet. Nature 503, 381–384 (2013).

    ADS  CAS  Google Scholar 

  46. Pepe, F. et al. An Earth-sized planet with an Earth-like density. Nature 503, 377–380 (2013).

    ADS  CAS  Google Scholar 

  47. Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    ADS  Google Scholar 

  48. Borucki, W. J. et al. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone. Science 340, 587–590 (2013).

    ADS  CAS  Google Scholar 

  49. Borucki, W. J. et al. in Transiting Extrasolar Planets Workshop (eds Afonso, C., Weldrake, D. & Henning, T.) (Astro. Soc. Pacif. Conf., 2007).

    Google Scholar 

  50. Chaplin, W. J. & Miglio, A. Asteroseismology of solar-type and red-giant stars. Annu. Rev. Astron. Astrophys. 51, 353–392 (2013).

    ADS  Google Scholar 

  51. Christensen-Dalsgaard, J. The new era of asteroseismology. EAS Publications Series 63, 91–104 (2013).

    Google Scholar 

  52. Prsa, A. et al. Kepler eclipsing binary stars. I. Catalog and principal characterization of 1879 eclipsing binaries in the first data release. Astron. J. 141, 83 (2011).

    ADS  Google Scholar 

  53. Tabachnik, S. & Tremaine, S. Maximum-likelihood method for estimating the mass and period distributions of extrasolar planets. Mon. Not. R. Astron. Soc. 335, 151–158 (2002).

    ADS  Google Scholar 

  54. Youdin, A. N. The exoplanet census: a general method applied to Kepler. Astrophys. J. 742, 38 (2011).

    ADS  Google Scholar 

  55. Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. 201, 15 (2012).

    ADS  Google Scholar 

  56. Dong, S. & Zhu, Z. Fast rise of 'Neptune-size' planets (4–8 R) from P 10 to 250 days — statistics of Kepler planet candidates up to 0.75 AU. Astrophys. J. 778, 53 (2013).

    ADS  Google Scholar 

  57. Jenkins, J. M. et al. Overview of the Kepler science processing pipeline. Astrophys. J. 713, L87–L91 (2010).

    ADS  Google Scholar 

  58. Tenenbaum, P. et al. Detection of potential transit signals in the first three quarters of Kepler mission data. Astrophys. J. Suppl. 199, 24 (2012).

    ADS  Google Scholar 

  59. Christiansen, J. L. et al. Measuring transit signal recovery in the Kepler pipeline. I. Individual events. Astrophys. J. Suppl. 207, 35 (2013).

    ADS  Google Scholar 

  60. Petigura, E. A. & Marcy, G. W. Identification and removal of noise modes in Kepler photometry. Publ. Astron. Soc. Pacif. 124, 1073–1082 (2012).

    ADS  Google Scholar 

  61. Petigura, E. A., Howard, A. W. & Marcy, G. W. Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl Acad. Sci. USA 110, 19273–19278 (2013).

    ADS  CAS  Google Scholar 

  62. Petigura, E. A., Marcy, G. W. & Howard, A. W. A plateau in the planet population below twice the size of Earth. Astrophys. J. 770, 69 (2013).

    ADS  Google Scholar 

  63. Batalha, N. Exploring exoplanet populations with NASA's Kepler mission. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1304196111 (2014).

  64. Wright, J. T. et al. The frequency of hot Jupiters orbiting nearby solar-type stars. Astrophys. J. 753, 160 (2012).

    ADS  Google Scholar 

  65. Dawson, R. I. & Murray-Clay, R. A. Giant planets orbiting metal-rich stars show signatures of planet-planet interactions. Astrophys. J. 767, L24 (2013).

    ADS  Google Scholar 

  66. Foreman-Mackey, D., Hogg, D. W. & Morton, T. D. Exoplanet population inference and the abundance of Earth analogs from noisy, incomplete catalogs. Preprint at http://arxiv.org/abs/1406.3020 (2014).

  67. Lopez, E. D. & Fortney, J. J. Understanding the mass-radius relation for sub-neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014).

    ADS  Google Scholar 

  68. Lithwick, Y., Xie, J. & Wu, Y. Extracting planet mass and eccentricity from TTV data. Astrophys. J. 761, 122 (2012).

    ADS  Google Scholar 

  69. Hadden, S. & Lithwick, Y. Densities and eccentricities of 139 Kepler planets from transit time variations. Astrophys. J. 787, 80 (2014).

    ADS  Google Scholar 

  70. Rogers, L. Most 1.6 Earth-radii planets are not rocky. Preprint at http://arxiv.org/abs/1407.4457 (2014).

  71. Wu, Y. & Lithwick, Y. Density and eccentricity of Kepler planets. Astrophys. J. 772, 74 (2013).

    ADS  Google Scholar 

  72. Weiss, L. M. & Marcy, G. W. The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. Astrophys. J. 783, L6 (2014).

    ADS  Google Scholar 

  73. Borucki, W. J. et al. Kepler-22b: a 2.4 Earth-radius planet in the habitable zone of a Sun-like star. Astrophys. J. 745, 120 (2012).

    ADS  Google Scholar 

  74. Morton, T. D. & Swift, J. The radius distribution of small planets around cool stars. Astrophys. J. 791, 10 (2014).

    ADS  Google Scholar 

  75. Lissauer, J. J. et al. Almost all of Kepler's multiple-planet candidates are planets. Astrophys. J. 750, 112 (2012).

    ADS  Google Scholar 

  76. Fabrycky, D. C. et al. Architecture of Kepler's multi-transiting systems: II. New investigations with twice as many candidates. Astrophys. J. 790, 146 (2014). This article characterizes the orbital properties of Kepler's multi-planet systems.

    ADS  Google Scholar 

  77. Tremaine, S. & Dong, S. The statistics of multi-planet systems. Astron. J. 143, 94 (2012).

    ADS  Google Scholar 

  78. Dawson, R. I. et al. Large eccentricity, low mutual inclination: the three-dimensional architecture of a hierarchical system of giant planets. Astrophys. J. 791, 89 (2014).

    ADS  Google Scholar 

  79. Ida, S. Stirring and dynamical friction rates of planetesimals in the solar gravitational field. Icarus 88, 129–145 (1990).

    ADS  Google Scholar 

  80. Moorhead, A. V. et al. The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities. Astrophys. J. Suppl. 197, 1 (2011).

    ADS  Google Scholar 

  81. Plavchan, P., Bilinski, C. & Currie, T. Investigation of Kepler objects of interest stellar parameters from observed transit durations. Publ. Astron. Soc. Pacif. 126, 34–47 (2014).

    ADS  Google Scholar 

  82. Kipping, D. M. Characterizing distant worlds with asterodensity profiling. Mon. Not. R. Astron. Soc. 440, 2164–2184 (2014).

    ADS  Google Scholar 

  83. Kipping, D. M., Dunn, W. R., Jasinski, J. M. & Manthri, V. P. A novel method to photometrically constrain orbital eccentricities: multibody asterodensity profiling. Mon. Not. R. Astron. Soc. 421, 1166–1188 (2012).

    ADS  Google Scholar 

  84. Dawson, R. I. & Johnson, J. A. The photoeccentric effect and proto-hot Jupiters. I. Measuring photometric eccentricities of individual transiting planets. Astrophys. J. 756, 122 (2012).

    ADS  Google Scholar 

  85. Zakamska, N. L., Pan, M. & Ford, E. B. Observational biases in determining extrasolar planet eccentricities in single-planet systems. Mon. Not. R. Astron. Soc. 410, 1895–1910 (2011).

    ADS  Google Scholar 

  86. Rafikov, R. R. & Slepian, Z. S. Dynamical evolution of thin dispersion-dominated planetesimal disks. Astron. J. 139, 565–579 (2010).

    ADS  Google Scholar 

  87. Albrecht, S. et al. Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. Astrophys. J. 757, 18 (2012).

    ADS  Google Scholar 

  88. Fabrycky, D. & Tremaine, S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007).

    ADS  CAS  Google Scholar 

  89. Tremaine, S. On the origin of the obliquities of the outer planets. Icarus 89, 85–92 (1991).

    ADS  Google Scholar 

  90. Heller, C. H. Encounters with protostellar disks. I. Disk tilt and the nonzero solar obliquity. Astrophys. J. 408, 337–346 (1993).

    ADS  Google Scholar 

  91. Batygin, K. A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature 491, 418–420 (2012).

    ADS  CAS  Google Scholar 

  92. Sanchis-Ojeda, R. et al. Alignment of the stellar spin with the orbits of a three-planet system. Nature 487, 449–453 (2012).

    ADS  CAS  Google Scholar 

  93. Hirano, T. et al. Measurements of stellar inclinations for Kepler planet candidates. II. Candidate spin-orbit misalignments in single- and multiple-transiting systems. Astrophys. J. 783, 9 (2014).

    ADS  Google Scholar 

  94. Gladman, B. Dynamics of systems of two close planets. Icarus 106, 247 (1993).

    ADS  Google Scholar 

  95. Smith, A. W. & Lissauer, J. J. Orbital stability of systems of closely-spaced planets. Icarus 201, 381–394 (2009).

    ADS  MATH  Google Scholar 

  96. Lissauer, J. J. et al. Architecture and dynamics of Kepler's candidate multiple transiting planet systems. Astrophys. J. Suppl. 197, 8 (2011).

    ADS  Google Scholar 

  97. Holman, M. J. A possible long-lived belt of objects between Uranus and Neptune. Nature 387, 785–788 (1997).

    ADS  CAS  Google Scholar 

  98. Evans, N. W. & Tabachnik, S. A. Structure of possible long-lived asteroid belts. Mon. Not. R. Astron. Soc. 333, L1–L5 (2002).

    ADS  Google Scholar 

  99. Fang, J. & Margot, J.-L. Are planetary systems filled to capacity? A study based on Kepler results. Astrophys. J. 767, 115 (2013).

    ADS  Google Scholar 

  100. Eggenberger, A. in EAS Publications Series (eds Gozdziewski, K., Niedzielski, A. & Schneider, J.) Vol 42. 19–37 (2010).

    Google Scholar 

  101. Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. 190, 1–42 (2010).

    ADS  CAS  Google Scholar 

  102. Wang, J., Fischer, D. A., Xie, J.-W. & Ciardi, D. R. Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 AU. Astrophys. J. 791, 111 (2014).

    ADS  Google Scholar 

  103. Tamuz, O. et al. The CORALIE survey for southern extra-solar planets. XV. Discovery of two eccentric planets orbiting HD 4113 and HD 156846. Astron. Astrophys. 480, L33–L36 (2008).

    ADS  CAS  Google Scholar 

  104. Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999).

    ADS  Google Scholar 

  105. Kipping, D. M. & Bakos, G. A., Buchhave, L., Nesvorny, D. & Schmitt, A. The hunt for exomoons with Kepler (HEK). I. Description of a new observational project. Astrophys. J. 750, 115 (2012).

    ADS  Google Scholar 

  106. Kipping, D. M. et al. The hunt for exomoons with Kepler (HEK). II. Analysis of seven viable satellite-hosting planet candidates. Astrophys. J. 770, 101 (2013).

    ADS  Google Scholar 

  107. Santos, N. C., Israelian, G. & Mayor, M. The metal-rich nature of stars with planets. Astron. Astrophys. 373, 1019–1031 (2001).

    ADS  CAS  Google Scholar 

  108. Santos, N. C., Israelian, G. & Mayor, M. Spectroscopic [FeH] for 98 extra-solar planet-host stars. Exploring the probability of planet formation. Astron. Astrophys. 415, 1153–1166 (2004).

    ADS  CAS  Google Scholar 

  109. Chiang, E. & Laughlin, G. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Mon. Not. R. Astron. Soc. 431, 3444–3455 (2013).

    ADS  Google Scholar 

  110. Hansen, B. M. S. & Murray, N. Testing in situ assembly with the Kepler planet candidate sample. Astrophys. J. 775, 53 (2013).

    ADS  Google Scholar 

  111. Rogers, L. A., Bodenheimer, P., Lissauer, J. J. & Seager, S. Formation and structure of low-density exo-Neptunes. Astrophys. J. 738, 59 (2011).

    ADS  Google Scholar 

  112. Swift, J. J. et al. Characterizing the cool KOIs. IV. Kepler-32 as a prototype for the formation of compact planetary systems throughout the Galaxy. Astrophys. J. 764, 105 (2013).

    ADS  Google Scholar 

  113. Goldreich, P. & Tremaine, S. Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980).

    ADS  MathSciNet  Google Scholar 

  114. Baruteau, C. et al. Planet-disc interactions and early evolution of planetary systems. Preprint at http://arxiv.org/abs/1312.4293 (2013).

  115. Peale, S. J. Orbital resonances in the Solar System. Ann. Rev. Astron. Astrophys. 14, 215–246 (1976).

    ADS  Google Scholar 

  116. Rein, H. Period ratios in multiplanetary systems discovered by Kepler are consistent with planet migration. Mon. Not. R. Astron. Soc. 427, L21–L24 (2012).

    ADS  Google Scholar 

  117. Goldreich, P. & Schlichting, H. E. Overstable librations can account for the paucity of mean motion resonances among exoplanet pairs. Astron. J. 147, 32 (2014).

    ADS  Google Scholar 

  118. Petrovich, C., Tremaine, S. & Rafikov, R. Scattering outcomes of close-in planets: constraints on planet migration. Astrophys. J. 786, 101 (2014).

    ADS  Google Scholar 

  119. Lithwick, Y. & Wu, Y. Resonant repulsion of Kepler planet pairs. Astrophys. J. 756, L11 (2012).

    ADS  Google Scholar 

  120. Petrovich, C., Malhotra, R. & Tremaine, S. Planets near mean-motion resonances. Astrophys. J. 770, 24 (2013).

    ADS  Google Scholar 

  121. Schlaufman, K. C. Tests of in situ formation scenarios for compact multiplanet systems. Astrophys. J. 790, 91 (2014).

    ADS  Google Scholar 

  122. Smith, J. C. et al. Kepler presearch data conditioning II. A Bayesian approach to systematic error correction. Publ. Astron. Soc. Pacif. 124, 1000–1014 (2012).

    ADS  Google Scholar 

  123. Stumpe, M. C. et al. Kepler presearch data conditioning I. Architecture and algorithms for error correction in Kepler light curves. Publ. Astron. Soc. Pacif. 124, 985–999 (2012).

    ADS  Google Scholar 

  124. Steffen, J. H. et al. Kepler constraints on planets near hot Jupiters. Proc. Natl Acad. Sci. USA 109, 7982–7987 (2012).

    ADS  CAS  Google Scholar 

  125. Dong, S. et al. On the metallicities of Kepler stars. Astrophys. J. 789, L3 (2014).

    ADS  Google Scholar 

  126. Wright, J. T. et al. The exoplanet orbit database. Publ. Astron. Soc. Pacif. 123, 412–422 (2011).

    ADS  Google Scholar 

  127. Latham, D. W. et al. A first comparison of Kepler planet candidates in single and multiple systems. Astrophys. J. 732, L24 (2011).

    ADS  Google Scholar 

  128. Lopez, E. D., Fortney, J. J. & Miller, N. How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond. Astrophys. J. 761, 59 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

This research has made use of the Exoplanet Orbit Database at http://exoplanets.org and the Extrasolar Planets Encyclopedia at http://exoplanets.eu. We are grateful to the Kepler Science Team for their extensive efforts in producing the high-quality data set that has made possible the results reviewed here. We thank W. Borucki, E. Chiang, S. Dong, E. Lee, E. Lopez, L. Rogers, J. Rowe, A. Youdin and K. Zahnle for helpful discussions and comments on the manuscript. R.I.D. and S.T. gratefully acknowledge funding from the Miller Institute for Basic Research in Science at the University of California, Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack J. Lissauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lissauer, J., Dawson, R. & Tremaine, S. Advances in exoplanet science from Kepler. Nature 513, 336–344 (2014). https://doi.org/10.1038/nature13781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13781

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing