Large, non-saturating magnetoresistance in WTe2

Abstract

Magnetoresistance is the change in a material’s electrical resistance in response to an applied magnetic field. Materials with large magnetoresistance have found use as magnetic sensors1, in magnetic memory2, and in hard drives3 at room temperature, and their rarity has motivated many fundamental studies in materials physics at low temperatures4. Here we report the observation of an extremely large positive magnetoresistance at low temperatures in the non-magnetic layered transition-metal dichalcogenide WTe2: 452,700 per cent at 4.5 kelvins in a magnetic field of 14.7 teslas, and 13 million per cent at 0.53 kelvins in a magnetic field of 60 teslas. In contrast with other materials, there is no saturation of the magnetoresistance value even at very high applied fields. Determination of the origin and consequences of this effect, and the fabrication of thin films, nanostructures and devices based on the extremely large positive magnetoresistance of WTe2, will represent a significant new direction in the study of magnetoresistivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structural considerations.
Figure 2: The temperature and field dependence of the XMR in WTe2, for I parallel to a and H parallel to c.
Figure 3: Field and angular dependence of the XMR in WTe2.
Figure 4: The electronic structure of WTe2, calculated including spin orbit coupling.

References

  1. 1

    Lenz, J. E. A review of magnetic sensors. Proc. IEEE 78, 973–989 (1990)

    ADS  Article  Google Scholar 

  2. 2

    Moritomo, Y., Asamitsu, A., Kuwahara, H. & Tokura, Y. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380, 141–144 (1996)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Daughton, J. GMR applications. J. Magn. Magn. Mater. 192, 334–342 (1999)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Urushibara, A. et al. Insulator–metal transition and giant magnetoresistance in La1−xSrxMnO3 . Phys. Rev. B 51, 14103–14109 (1995)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Egelhoff, W. F. et al. Magnetoresistance values exceeding 21% in symmetric spin valves. J. Appl. Phys. 78, 273–277 (1995)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Ramirez, A. P., Cava, R. J. & Krajewski, J. Colossal magnetoresistance in Cr-based chalcogenide spinels. Nature 386, 156–159 (1997)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Jin, S., McCormack, M., Tiefel, T. H. & Ramesh, R. Colossal magnetoresistance in LaCaMnO ferromagnetic thin films. J. Appl. Phys. 76, 6929–6933 (1994)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Yang, F. Y. et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335–1337 (1999)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Mun, E. et al. Magnetic field effects on transport properties of PtSn4 . Phys. Rev. B 85, 035135 (2012)

    ADS  Article  Google Scholar 

  10. 10

    Ishiwata, S. et al. Extremely high electron mobility in a phonon-glass semimetal. Nature Mater. 12, 512–517 (2013)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Solin, S. A., Thio, T., Hines, D. R. & Heremans, J. J. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science 289, 1530–1532 (2000)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Alers, P. B. & Webber, R. T. The magnetoresistance of bismuth crystals at low temperatures. Phys. Rev. 91, 1060–1065 (1953)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Brown, B. E. The crystal structures of WTe2 and high-temperature MoTe2 . Acta Crystallogr. 20, 268–274 (1966)

    CAS  Article  Google Scholar 

  14. 14

    Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    CAS  Article  Google Scholar 

  15. 15

    Moncton, D. E., Axe, J. D. & DiSalvo, F. J. Neutron scattering study of the charge-density wave transitions in 2H-TaSe2 and 2H-NbSe2 . Phys. Rev. B 16, 801–819 (1977)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Morris, R. C., Coleman, R. V. & Bhandari, R. Superconductivity and magnetoresistance in NbSe2 . Phys. Rev. B 5, 895–901 (1972)

    ADS  Article  Google Scholar 

  17. 17

    Rapoport, L. et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Rapoport, L., Fleischer, N. & Tenne, R. Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15, 1782–1788 (2005)

    CAS  Article  Google Scholar 

  19. 19

    Bates, J., Gruzalski, G., Dudney, N., Luck, C. & Yu, X. Rechargeable thin-film lithium batteries. Solid State Ion. 70, 619–628 (1994)

    Article  Google Scholar 

  20. 20

    Ayari, A., Cobas, E., Ogundadegbe, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007)

    ADS  Article  Google Scholar 

  21. 21

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotechnol. 6, 147–150 (2011)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Kabashima, S. Electrical properties of tungsten-ditelluride WTe2 . J. Phys. Soc. Jpn. 21, 945–948 (1966)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Augustin, J. et al. Electronic band structure of the layered compound Td-WTe2 . Phys. Rev. B 62, 10812–10823 (2000)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Revolinsky, E. & Beerntsen, D. Electrical properties of the MoTe2–WTe2 and MoSe2–WSe2 systems. J. Appl. Phys. 35, 2086–2089 (1964)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Pillo, T. et al. Photoemission of bands above the Fermi level: the excitonic insulator phase transition in 1T-TiSe2 . Phys. Rev. B 61, 16213–16222 (2000)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Du, X., Tsai, S.-W., Maslov, D. L. & Hebard, A. F. Metal-insulator-like behavior in semimetallic bismuth and graphite. Phys. Rev. Lett. 94, 166601 (2005)

    ADS  Article  Google Scholar 

  27. 27

    Fauqué, B., Vignolle, B., Proust, C., Issi, J.-P. & Behnia, K. Electronic instability in bismuth far beyond the quantum limit. New J. Phys. 11, 113012 (2009)

    ADS  Article  Google Scholar 

  28. 28

    Kopelevich, Y. et al. Reentrant metallic behavior of graphite in the quantum limit. Phys. Rev. Lett. 90, 156402 (2003)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Ekin, J. Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing (Oxford Univ. Press, 2006)

    Google Scholar 

  30. 30

    Jakub Jankowsi, S. E.-A. & Oszwaldowski, M. Hall sensors for extreme temperatures. Sensors 11, 876–885 (2011)

    Article  Google Scholar 

  31. 31

    Di Salvo, F. J., Moncton, D. E. & Waszczak, J. V. Electronic properties and superlattice formation in the semimetal TiSe2 . Phys. Rev. B 14, 4321–4328 (1976)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k, an Augmented Plane Wave + Local Orbitals Program for calculating Crystal Properties (Technische Univ. Wien, 2001)

    Google Scholar 

  33. 33

    Singh, D. J. & Nordström, L. Planewaves, Pseudopotentials, and the LAPW Method 2nd edn (Springer, 2006)

    Google Scholar 

Download references

Acknowledgements

We thank T. Valla, I. Pletikosic, F. Balakirev, R. McDonald and J. Betts for discussions, and E. Tutuc for inquiring about WTe2. This research was supported by the Army Research Office, grants W911NF-12-1-0461 and W911NF-11-1-0379, and the NSF MRSEC Program Grant DMR-0819860. The National Magnet Laboratory is supported by the National Science Foundation Cooperative Agreement no. DMR-1157490, the State of Florida, and the US Department of Energy; this work was supported by the US Department of Energy’s Basic Energy Sciences (DOE BES) project ‘Science at 100 Tesla’. The electron microscopy study at Brookhaven National Laboratory was supported by the DOE BES, by the Materials Sciences and Engineering Division under contract DE-AC02-98CH10886, and through the use of the Center for Functional Nanomaterials.

Author information

Affiliations

Authors

Contributions

M.N.A. was the lead researcher. M.N.A. and S.F. grew crystals and measured resistivities with N.H. J.X., T.L. and M.H. measured the detailed resistivity behaviour. Q.D.G. and L.S. calculated the electronic structure. J.T. performed the electron microscopy characterization. N.P.O. and R.J.C. supervised the research. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Mazhar N. Ali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Simulation of the resonance criterion for non-saturating MR in semimetals.

The MR is sharply peaked at a ratio of holes to electrons of 1:1, even when their mobilities are not equal, and the MR continues to increase to high applied fields with no saturation.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Xiong, J., Flynn, S. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014). https://doi.org/10.1038/nature13763

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.