Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental realization of universal geometric quantum gates with solid-state spins

Abstract

Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an ‘all-geometric’ approach to quantum computation1,2, the quantum gates are implemented using Berry phases3 and their non-Abelian extensions, holonomies4, from geometric transformation of quantum states in the Hilbert space5. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features1,2,6,7. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance8,9; however, such systems are known to be non-scalable for the purposes of quantum computing10. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions11, superconducting quantum bits12 and quantum dots13, and a recent experiment has realized geometric single-bit gates in a superconducting system14. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen–vacancy centres. These diamond defects provide a scalable experimental platform15,16,17 with the potential for room-temperature quantum computing16,17,18,19, which has attracted strong interest in recent years20. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system15,16,17,18,19,20.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Geometric gates in a diamond nitrogen–vacancy centre.
Figure 2: Experimental results for single-bit geometric gates.
Figure 3: Level scheme and pulse sequence for the geometric CNOT gate.
Figure 4: Experimental results for the geometric CNOT gate.

References

  1. 1

    Zanardi, P. & Rasetti, M. Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. 2

    Pachos, J., Zanardi, P. & Rasetti, M. Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305(R) (2000)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Berry, M. V. Quantal phase-factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Wilczek, F. & Zee, A. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  5. 5

    Lloyd, S. Computation from geometry. Science 292, 1669 (2001)

    CAS  Article  Google Scholar 

  6. 6

    Sjöqvist, E. et al. Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Johansson, M. et al. Robustness of non-adiabatic holonomic gates. Phys. Rev. A 86, 062322 (2012)

    ADS  Article  Google Scholar 

  8. 8

    Jones, J. A., Vedral, V., Ekert, A. & Castagnoli, G. Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Feng, G., Xu, G. & Long, G. Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    ADS  Article  Google Scholar 

  10. 10

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010)

    Book  Google Scholar 

  11. 11

    Duan, L. M., Cirac, J. I. & Zoller, P. Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Falci, G. et al. Detection of geometric phases in superconducting nanocircuits. Nature 407, 355–358 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Solinas, P., Zanardi, P., Zanghi, N. & Rossi, F. Holonomic quantum gates: a semiconductor-based implementation. Phys. Rev. A 67, 062315 (2003)

    ADS  Article  Google Scholar 

  14. 14

    Abdumalikov, A. A. et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  16. 16

    Neumann, P. et al. Scalable quantum register based on coupled electron spins in a room temperature solid. Nature Phys. 6, 249–253 (2010)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Yao, N. Y. et al. Scalable architecture for a room temperature solid-state quantum information processor. Nature Commun. 3, 800 (2012)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Dolde, F. et al. High-fidelity spin entanglement using optimal control. Nature Commun. 5, 3371 (2014)

    ADS  Article  Google Scholar 

  20. 20

    Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Shapere, A. & Wilczek, F. Geometric Phases in Physics (World Scientific, 1989)

    MATH  Google Scholar 

  22. 22

    Zhu, S. L. & Wang, Z. D. Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002)

    ADS  Article  Google Scholar 

  23. 23

    Jacques, V. et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009)

    ADS  CAS  Article  Google Scholar 

  24. 24

    White, A. G. et al. Measuring two-qubit gates. J. Opt. Soc. Am. B 24, 172–183 (2007)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Yao, N. Y. et al. Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett. 106, 040505 (2011)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Jiang, L., Taylor, J. M., Sorensen, A. S. & Lukin, M. D. Distributed quantum computation based-on small quantum registers. Phys. Rev. A 76, 062323 (2007)

    ADS  Article  Google Scholar 

  28. 28

    Duan, L. M. & Monroe, C. Quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2010)

    ADS  Article  Google Scholar 

  29. 29

    Loredo, J. C., Broome, M. A., Smith, D. H. & White, A. G. Observation of entanglement-dependent two-particle holonomic phase. Phys. Rev. Lett. 112, 143603 (2014)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Pachos, J. K. Introduction to Topological Quantum Computation (Cambridge Univ. Press, 2012)

    Book  Google Scholar 

Download references

Acknowledgements

We thank M. Lukin’s group for discussions. This work was supported by the National Basic Research Program of China 2011CBA00302 and the quantum information project from the Ministry of Education of China. In addition, L.-M.D. acknowledges support from the IARPA MUSIQC program, the AFOSR and the ARO MURI program.

Author information

Affiliations

Authors

Contributions

L.-M.D. had the idea for the experiment and supervised the project. C.Z., W.-B.W., L.H., W.-G.Z., C.-Y.D., F.W. carried out the experiment. L.-M.D. and C.Z. wrote the manuscript.

Corresponding author

Correspondence to L.-M. Duan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zu, C., Wang, WB., He, L. et al. Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514, 72–75 (2014). https://doi.org/10.1038/nature13729

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing