Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assembly-line synthesis of organic molecules with tailored shapes

Abstract

Molecular ‘assembly lines’, in which organic molecules undergo iterative processes such as chain elongation and functional group manipulation, are found in many natural systems, including polyketide biosynthesis. Here we report the creation of such an assembly line using the iterative, reagent-controlled homologation of a boronic ester. This process relies on the reactivity of α-lithioethyl tri-isopropylbenzoate, which inserts into carbon–boron bonds with exceptionally high fidelity and stereocontrol; each chain-extension step generates a new boronic ester, which is immediately ready for further homologation. We used this method to generate organic molecules that contain ten contiguous, stereochemically defined methyl groups. Several stereoisomers were synthesized and shown to adopt different shapes—helical or linear—depending on the stereochemistry of the methyl groups. This work should facilitate the rational design of molecules with predictable shapes, which could have an impact in areas of molecular sciences in which bespoke molecules are required.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iterative approaches to assembly-line synthesis.
Figure 2: Methodology used for homologation of boronic esters.
Figure 3: Iterative assembly-line synthesis.
Figure 4: The effect of syn-pentane and other intramolecular steric interactions on conformation of molecules.
Figure 5: Solution conformations of compounds 14 and 18.

Similar content being viewed by others

Accession codes

Data deposits

X-ray crystallographic data have been deposited in the Cambridge Crystallographic Data Centre database with accession numbers CCDC 993442 (12), CCDC 993443 (15) and CCDC 993441(17).

References

  1. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001)

    CAS  PubMed  Google Scholar 

  2. Hoffmann, R. W. Flexible molecules with defined shape: conformational design. Angew. Chem. Int. Edn Engl. 31, 1124–1134 (1992)

    Google Scholar 

  3. Hoffmann, R. W. Conformation design of open-chain compounds. Angew. Chem. Int. Edn Engl. 39, 2054–2070 (2000)

    CAS  Google Scholar 

  4. Smith, P. W. & Still, W. C. The effect of substitution and stereochemistry on ion binding in the polyether ionophore monensin. J. Am. Chem. Soc. 110, 7917–7919 (1988)

    CAS  Google Scholar 

  5. Wang, X., Erickson, S. D., Iimori, T. & Still, W. C. Enantioselective complexation of organic ammonium ions by simple tetracyclic podand ionophores. J. Am. Chem. Soc. 114, 4128–4137 (1992)

    CAS  Google Scholar 

  6. Wei, A., Boy, K. M. & Kishi, Y. Biological evaluation of rationally modified analogs of the H-type II blood group trisaccharide. A correlation between solution conformation and binding affinity. J. Am. Chem. Soc. 117, 9432–9436 (1995)

    CAS  Google Scholar 

  7. Boger, D. L., Ramsey, T. M., Cai, H., Hoehn, S. T. & Stubbe, J. Definition of the effect and role of the bleomycin A2 valerate substituents: preorganization of a rigid, compact conformation implicated in sequence-selective DNA cleavage. J. Am. Chem. Soc. 120, 9149–9158 (1998)

    CAS  Google Scholar 

  8. Nilewski, C., Geisser, R. W., Ebert, M.-O. & Carreira, E. M. Conformational and configurational analysis in the study and synthesis of chlorinated natural products. J. Am. Chem. Soc. 131, 15866–15876 (2009)

    CAS  PubMed  Google Scholar 

  9. Hanessian, S., Giroux, S. & Mascitti, V. The iterative synthesis of acyclic deoxypropionate units and their implication in polyketide-derived natural products. Synthesis 7, 1057–1076 (2006)

    Google Scholar 

  10. ter Horst, B., Feringa, B. L. & Minnaard, A. J. Iterative strategies for the synthesis of deoxypropionates. Chem. Commun. 46, 2535–2547 (2010)

    CAS  Google Scholar 

  11. Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012)

    ADS  CAS  PubMed  Google Scholar 

  12. Matteson, D. S. & Ray, R. Directed chiral synthesis with pinanediol boronic esters. J. Am. Chem. Soc. 102, 7590–7591 (1980)

    CAS  Google Scholar 

  13. Matteson, D. S. Boronic esters in asymmetric synthesis. J. Org. Chem. 78, 10009–10023 (2013)

    CAS  PubMed  Google Scholar 

  14. Stymiest, J. L., Dutheuil, G., Mahmood, A. & Aggarwal, V. K. Lithiated carbamates: chiral carbenoids for iterative homologation of boranes and boronic esters. Angew. Chem. Int. Ed. 46, 7491–7494 (2007)

    CAS  Google Scholar 

  15. Besong, G., Jarowicki, K., Kocienski, P. J., Sliwinski, E. & Boyle, F. T. Synthesis of (S)-(−)-N-acetylcolchinol using intramolecular biaryl oxidative coupling. Org. Biomol. Chem. 4, 2193–2207 (2006)

    CAS  PubMed  Google Scholar 

  16. Blakemore, P. R., Marsden, S. P. & Vater, H. D. Reagent controlled asymmetric homologation of boronic esters by enantioenriched main-group chiral carbenoids. Org. Lett. 8, 773–776 (2006)

    CAS  PubMed  Google Scholar 

  17. Blakemore, P. R. & Burge, M. S. Iterative stereospecific reagent-controlled homologation of pinacol boronates by enantioenriched α-chloroalkyllithium reagents. J. Am. Chem. Soc. 129, 3068–3069 (2007)

    CAS  PubMed  Google Scholar 

  18. Emerson, C. R., Zakharov, L. N. & Blakemore, P. R. Investigation of functionalized α-chloroalkyllithiums for a stereospecific reagent-controlled approach to the analgesic alkaloid (–)-epibatidine. Chemistry 19, 16342–16356 (2013)

    CAS  PubMed  Google Scholar 

  19. Hoppe, D., Hintze, F. & Tebben, P. Chiral lithium-1-oxyalkanides by asymmetric deprotonation; enantioselective synthesis of 2-hydroxyalkanoic acids and secondary alkanols. Angew. Chem. Int. Edn Engl. 29, 1422–1424 (1990)

    Google Scholar 

  20. Hoppe, D. & Hense, T. Enantioselective synthesis with lithium/(−)-sparteine carbanion pairs. Angew. Chem. Int. Edn Engl. 36, 2282–2316 (1997)

    CAS  Google Scholar 

  21. Beckmann, E., Desai, V. & Hoppe, D. Stereospecific reaction of α-carbamoyloxy-2-alkenylboronates and α-carbamoyloxy-alkylboronates with Grignard reagents - synthesis of highly enantioenriched secondary alcohols. Synlett 13, 2275–2280 (2004)

    Google Scholar 

  22. Dutheuil, G., Webster, M. P., Worthington, P. A. & Aggarwal, V. K. Stereocontrolled synthesis of carbon chains bearing contiguous methyl groups by iterative boronic ester homologations: application to the total synthesis of (+)-faranal. Angew. Chem. Int. Ed. 48, 6317–6319 (2009)

    CAS  Google Scholar 

  23. Robinson, A. & Aggarwal, V. K. Asymmetric total synthesis of solandelactone E: stereocontrolled synthesis of the 1,4-diol-2-ene core via lithiation-borylation-allylation sequence. Angew. Chem. Int. Ed. 49, 6673–6675 (2010)

    CAS  Google Scholar 

  24. Pulis, A. P. & Aggarwal, V. K. Synthesis of enantioenriched tertiary boronic esters from secondary allylic carbamates. Application to the synthesis of C30 botryococcene. J. Am. Chem. Soc. 134, 7570–7574 (2012)

    CAS  PubMed  Google Scholar 

  25. Fletcher, C. J., Wheelhouse, K. M. P. & Aggarwal, V. K. Stereoselective total synthesis of (+)-giganin and its C10 epimer by using late-stage lithiation–borylation methodology. Angew. Chem. Int. Ed. 52, 2503–2506 (2013)

    CAS  Google Scholar 

  26. Blair, D. J., Fletcher, C. J., Wheelhouse, K. M. P. & Aggarwal, V. K. Stereocontrolled synthesis of adjacent acyclic quaternary-tertiary motifs: application to a concise total synthesis of (–)-filiformin. Angew. Chem. Int. Ed. 53, 5552–5555 (2014)

    CAS  Google Scholar 

  27. Sun, X. & Blakemore, P. R. Programmed synthesis of a contiguous stereotriad motif by triple stereospecific reagent-controlled homologation. Org. Lett. 15, 4500–4503 (2013)

    CAS  PubMed  Google Scholar 

  28. Larouche-Gauthier, R., Fletcher, C. J., Couto, I. & Aggarwal, V. K. Use of alkyl 2,4,6-triisopropylbenzoates in the asymmetric homologation of challenging boronic esters. Chem. Commun. (Camb.) 47, 12592–12594 (2011)

    CAS  Google Scholar 

  29. Still, W. C. & Sreekumar, C. α-Alkoxyorganolithium reagents. A new class of configurationally stable carbanions for organic synthesis. J. Am. Chem. Soc. 102, 1201–1202 (1980)

    CAS  Google Scholar 

  30. Rayner, P. J., O'Brien, P. & Horan, R. A. J. Preparation and reactions of enantiomerically pure α-functionalized Grignard reagents. J. Am. Chem. Soc. 135, 8071–8077 (2013)

    CAS  PubMed  Google Scholar 

  31. Negishi, E. A quarter of a century of explorations in organozirconium chemistry. Dalton Trans. 827–848 (2005)

  32. Vigneron, J. P., Dhaenens, M. & Horeau, A. Nouvelle methode pour porter au maximum la purete optique d’un produit partiellement dedouble sans l’aide d’aucune substance chirale. Tetrahedron 29, 1055–1059 (1973)

    CAS  Google Scholar 

  33. Tsuzuki, S. et al. Investigation of intramolecular interactions in n-alkanes. Cooperative energy increments associated with GG and GTG’ sequences. J. Am. Chem. Soc. 113, 4665–4671 (1991)

    CAS  Google Scholar 

  34. Lotz, B., Wittmann, J. C. & Lovinger, A. J. Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37, 4979–4992 (1996)

    CAS  Google Scholar 

  35. Hunter, L., Kirsch, P., Slawin, A. M. Z. & O’Hagan, D. Synthesis and structure of stereoisomeric multivicinal hexafluoroalkanes. Angew. Chem. Int. Ed. 48, 5457–5460 (2009)

    CAS  Google Scholar 

  36. Hoffmann, R. W., Stahl, M., Schopfer, U. & Frenking, G. Conformation design of hydrocarbon backbones: a modular approach. Chemistry 4, 559–566 (1998)

    CAS  Google Scholar 

  37. Butts, C. P., Jones, C. R. & Harvey, J. N. High precision NOEs as a probe for low level conformers – a second conformation of strychnine. Chem. Commun. 47, 1193–1195 (2011)

    CAS  Google Scholar 

  38. Butts, C. P. et al. Interproton distance determinations by NOE – surprising accuracy and precision in a rigid organic molecule. Org. Biomol. Chem. 9, 177–184 (2011)

    CAS  PubMed  Google Scholar 

  39. Adler, T. B., Werner, H. J. & Manby, F. R. Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. J. Chem. Phys. 130, 054106 (2009)

    ADS  PubMed  Google Scholar 

  40. Chini, M. G. et al. Quantitative ROE-derived interproton distances combined with quantum chemical calculations of NMR parameters in the stereochemical determination of conicasterol F, a nuclear receptor ligand from Theonella swinhoei. J. Org. Chem. 77, 1489–1496 (2012)

    ADS  CAS  PubMed  Google Scholar 

  41. Di Micco, S., Chini, M. G., Riccio, R. & Bifulco, G. Quantum mechanical calculation of NMR parameters in the stereostructural determination of natural products. Eur. J. Org. Chem. 2010, 1411–1434 (2010)

    Google Scholar 

  42. Hanessian, S. et al. Application of conformation design in acyclic stereoselection: total synthesis of borrelidin as the crystalline benzene solvate. J. Am. Chem. Soc. 125, 13784–13792 (2003)

    CAS  PubMed  Google Scholar 

  43. Brand, G. J., Studte, C. & Breit, B. Iterative synthesis of (oligo)deoxypropionates via zinc-catalyzed enantiospecific sp3−sp3 cross-coupling. Org. Lett. 11, 4668–4670 (2009)

    CAS  PubMed  Google Scholar 

  44. ter Horst, B., Feringa, B. L. & Minnaard, A. J. Catalytic asymmetric synthesis of phthioceranic acid, a heptamethyl-branched acid from Mycobacterium tuberculosis. Org. Lett. 9, 3013–3015 (2007)

    CAS  PubMed  Google Scholar 

  45. Han, S. B., Hassan, A., Kim, I. S. & Krische, M. J. Total synthesis of (+)-roxaticin via C−C bond forming transfer hydrogenation: a departure from stoichiometric chiral reagents, auxiliaries, and premetalated nucleophiles in polyketide construction. J. Am. Chem. Soc. 132, 15559–15561 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, S. J., Gray, K. C., Paek, J. S. & Burke, M. D. Simple, efficient, and modular syntheses of polyene natural products via iterative cross-coupling. J. Am. Chem. Soc. 130, 466–468 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, C. & Glorius, F. Controlled iterative cross-coupling: on the way to the automation of organic synthesis. Angew. Chem. Int. Ed. 48, 5240–5244 (2009)

    CAS  Google Scholar 

  48. Woerly, E. M., Roy, J. & Burke, M. D. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction. Nat. Chem. 6, 484–491 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Negishi, E., Tan, Z., Liang, B. & Novak, T. An efficient and general route to reduced polypropionates via Zr-catalyzed asymmetric C—C bond formation. Proc. Natl Acad. Sci. USA 101, 5782–5787 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Albert, B. J. & Yamamoto, H. A triple-aldol cascade reaction for the rapid assembly of polyketides. Angew. Chem. Int. Ed. 49, 2747–2749 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank EPSRC (EP/I038071/1) and the European Research Council (FP7/2007-2013, ERC grant no. 246785) for financial support. M.B. thanks the EPSRC-funded Bristol Chemical Synthesis Centre for Doctoral Training (EP/G036764/1) and Novartis for a PhD studentship. We wish to thank C. Woodall for assistance with X-ray analysis and E. Bozoki for assistance with preparative high-performance liquid chromatography purification.

Author information

Authors and Affiliations

Authors

Contributions

V.K.A. designed the project. M.B. conducted and designed the experiments and analysed the data. S.E. performed computational studies and analysed the data with J.N.H. J.R.B. and S.P.B. performed the NMR experiments and analysed the data with C.P.B. M.P.W. conducted the preliminary experiments with lithiated carbamates. S.B. optimized the recrystallization conditions for stannane 5. J.W.D. supervised M.B. while working at Novartis. V.K.A., M.B., J.N.H. and C.P.B. wrote the manuscript.

Corresponding authors

Correspondence to Craig P. Butts, Jeremy N. Harvey or Varinder K. Aggarwal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Text and Data – see Supplementary Contents page for details. (PDF 6277 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burns, M., Essafi, S., Bame, J. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014). https://doi.org/10.1038/nature13711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13711

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing