Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asian monsoons in a late Eocene greenhouse world

Abstract

The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan–Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55–34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan–Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location map of study sites and late Eocene palaeogeography of the Asian mainland.
Figure 2: Low oxygen isotopic values with strong yearly variation in fossils from Myanmar.
Figure 3: Sedimentary features of late Eocene clastic deposits in the Xining Basin.
Figure 4: Climatic simulations at 40 Myr ago, illustrating Eocene monsoonal circulation on the Asian mainland.
Figure 5: Climatic simulations at 34 Myr ago.

Similar content being viewed by others

References

  1. Xu, M. et al. Steady decline of east Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J. Geophys. Res. 111, D24111 (2006)

    ADS  Google Scholar 

  2. Zhang, S. & Wang, B. Global summer monsoon rainy seasons. Int. J. Climatol. 28, 1563–1578 (2008)

    Google Scholar 

  3. Prell, W. & Kutzbach, J. Sensitivity of the Indian Monsoon to forcing parameters and implications for its evolution. Nature 360, 647–652 (1992)

    ADS  Google Scholar 

  4. Boos, W. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010)

    CAS  ADS  Google Scholar 

  5. Clift, P. et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geosci. 351, 875–881 (2008)

    ADS  Google Scholar 

  6. Rowley, D. & Currie, B. Paleo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006)

    CAS  PubMed  ADS  Google Scholar 

  7. Dupont-Nivet, G., Hoorn, C. & Konert, M. Tibetan uplift prior to the Eocene–Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geology 36, 987–990 (2008)

    CAS  ADS  Google Scholar 

  8. Molnar, P., Boos, W. & Battisti, D. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38, 77–102 (2010)

    CAS  ADS  Google Scholar 

  9. Guo, Z. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002)

    CAS  PubMed  ADS  Google Scholar 

  10. Qiang, X. et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci. China Earth Sci. 54, 136–144 (2011)

    CAS  Google Scholar 

  11. Sun, X. & Wang, P. How old is the Asian monsoon system? Paleobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 181–222 (2005)

    Google Scholar 

  12. Pagani, M., Zachos, J., Freeman, K., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)

    CAS  PubMed  ADS  Google Scholar 

  13. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    CAS  PubMed  ADS  Google Scholar 

  14. Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997)

    CAS  ADS  Google Scholar 

  15. Fluteau, F., Ramstein, G. & Besse, J. Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res. 104, 11995–12018 (1999)

    ADS  Google Scholar 

  16. Zhang, Z., Wang, H., Guo, Z. & Jiang, D. Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China. Earth Planet. Sci. Lett. 257, 622–634 (2007)

    CAS  ADS  Google Scholar 

  17. Zhang, Z. et al. Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J. Asian Earth Sci. 44, 24–35 (2012)

    CAS  ADS  Google Scholar 

  18. Bosboom, R. et al. Late Eocene sea retreat from the Tarim Basin (west China), and concomitant Asian paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 385–398 (2011)

    Google Scholar 

  19. Huber, M. & Goldner, A. Eocene monsoons. J. Asian Earth Sci. 44, 3–23 (2012)

    ADS  Google Scholar 

  20. Quan, C., Liu, Y. & Utescher, T. Eocene monsoon prevalence over China: a paleobotanical perspective. Palaeogeogr. Palaeoclimatol. Palaeoecol. 365–366, 302–311 (2012)

    Google Scholar 

  21. Wang, D., Lu, S., Han, S., Sun, X. & Quan, C. Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics. J. Asian Earth Sci. 62, 776–787 (2013)

    ADS  Google Scholar 

  22. Dettman, D. et al. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology 29, 31–34 (2001)

    CAS  ADS  Google Scholar 

  23. Sharma, S. et al. Oxygen isotopes of bovid teeth as archives of paleoclimatic variations in archaeological deposits of the Ganga plain, India. Quat. Res. 62, 19–28 (2004)

    CAS  Google Scholar 

  24. Martin, C., Bentaleb, I. & Antoine, P. O. Pakistan mammal tooth stable isotopes show paleoclimatic and paleoenvironmental changes since the early Oligocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 311, 19–29 (2011)

    Google Scholar 

  25. Vuille, M., Werner, M., Bradley, R. S. & Keimig, F. Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. 110, D23108 (2005)

    ADS  Google Scholar 

  26. Breitenbach, S. et al. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet. Sci. Lett. 292, 212–220 (2010)

    CAS  ADS  Google Scholar 

  27. Araguas-Araguas, L., Froehlich, K. & Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. 742, 721–728 (1998)

    Google Scholar 

  28. Grossman, E. & Ku, T. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. 59, 59–74 (1986)

    CAS  Google Scholar 

  29. Gajurel, A., France-Lanord, C., Huyghe, P., Guilmette, C. & Gurung, D. C and O isotope compositions of modern fresh-water mollusc shells and river waters from the Himalaya and Ganga plain. Chem. Geol. 233, 156–183 (2006)

    CAS  ADS  Google Scholar 

  30. Kohn, M., Schoeninger, M. & Valley, J. Herbivor tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996)

    CAS  ADS  Google Scholar 

  31. Licht, A. et al. A palaeo Tibet–Myanmar connection? Reconstructing the Late Eocene drainage system of central Myanmar using a multi-proxy approach. J. Geol. Soc. Lond. 170, 929–939 (2013)

    Google Scholar 

  32. Tindall, J. et al. Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean–atmosphere GCM: implications for reconstructing early Eocene climate. Earth Planet. Sci. Lett. 292, 265–273 (2010)

    CAS  ADS  Google Scholar 

  33. Tafforeau, P., Bentaleb, I., Jaeger, J. & Martin, C. Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 246, 206–227 (2007)

    Google Scholar 

  34. Jaeger, J. J. et al. Systematics and paleobiology of the anthropoid primate Pondaungia from the late Middle Eocene of Myanmar. C. R. Palevol 3, 243–255 (2004)

    Google Scholar 

  35. Licht, A. et al. Influence of permeability barriers in alluvial hydromorphic palaeosols: the Eocene Pondaung Formation, Myanmar. Sedimentology 61, 362–382 (2014)

    Google Scholar 

  36. Licht, A. et al. Fossil woods from the Late Middle Eocene Pondaung Formation, Myanmar. Rev. Palaeobot. Palynol. 202, 29–46 (2014)

    Google Scholar 

  37. Dupont-Nivet, G. et al. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, 635–638 (2007)

    CAS  PubMed  Google Scholar 

  38. Abels, H. A., Dupont-Nivet, G., Xiao, G., Bosboom, R. & Krijgsman, W. Step-wise change of Asian interior climate preceding the Eocene–Oligocene transition (EOT). Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 399–412 (2011)

    Google Scholar 

  39. Krinsley, D. & Doornkamp, J. Atlas of Quartz Sand Surface Textures (Cambridge Univ. Press, 1973)

    Google Scholar 

  40. Vandenberghe, J. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth Sci. Rev. 121, 18–30 (2013)

    ADS  Google Scholar 

  41. Lu, H., Vandenberghe, J. & An, Z. Aeolian origin and palaeoclimatic implications of the ‘Red Clay’ (north China) as evidenced by grain-size distribution. J. Quat. Sci. 16, 89–97 (2001)

    Google Scholar 

  42. Sun, D., Su, R., Bloemendal, J. & Lu, H. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 264, 39–53 (2008)

    Google Scholar 

  43. Alonso-Zarza, A. et al. Mudflat/distal fan and shallow lake sedimentation (upper Vallesian–Turolian) in the Tianshui Basin, Central China: evidence against the late Miocene eolian loess. Sedim. Geol. 222, 42–51 (2009)

    ADS  Google Scholar 

  44. Hourdin, F. et al. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813 (2006)

    Google Scholar 

  45. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012)

    ADS  Google Scholar 

  46. Hall, R. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571, 1–41 (2012)

    ADS  Google Scholar 

  47. Wilson, D. et al. Antarctic topography at the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335–336, 24–34 (2012)

    Google Scholar 

  48. DeConto, R., Pollard, D. & Harwood, D. Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography 22, PA3214 (2007)

    ADS  Google Scholar 

  49. Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D. & Zhang, Z. Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current. Paleoceanography 27, PA4201 (2012)

    ADS  Google Scholar 

  50. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the Commissariat a l'Energie Atomique/Centre de Calcul Recherche et Technologie for access to computing facilities; V. Barbin for cathodoluminescence microscopy; C. Fontaine for X-ray diffraction; R. Amiot, T. Bouten, M. Konert, M. Lebbink and T. Zalm for laboratory assistance; the many colleagues of the Franco-Burmese palaeontological team for field assistance; and D. Dettman and F. Fluteau for discussions. This work was supported by the ANR-09-BLAN-0238-02 Program, the University of Poitiers, the Netherlands Organisation for Scientific Research (NWO-ALW) with funding to H.A. and G.D.-N., the Marie Curie CIG 294282, the Ministry of Culture of the Republic of the Union of Myanmar, the French ministries of Foreign Affairs and of Higher Education and Research, the Alexander von Humboldt Foundation, the Chinese Ministry of Education and the National Natural Science Foundation of China (NSFC). A.L. was also funded by a Fyssen Foundation study grant.

Author information

Authors and Affiliations

Authors

Contributions

A.L., J.-J.J., H.A. and G.D.-N. conceived the project. A.L., A.N.S. and J.-J.J. collected Burmese samples. A.L., T.R., C.F.-L. and C.L. performed isotopic analyses. H.A., G.D.-N., M.v.C., D.T. and Z.G. collected Chinese samples. M.v.C., H.A., J.T.A., D.T., J.V. and R.A. performed petrographic and grain-size analyses of the Xining sediment. J.-B.L. and Y.D. conducted numerical climate modelling. A.L., H.A., M.v.C. and G.D.-N. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to A. Licht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Palaeogeographic world maps of climatic simulations.

a, Palaeogeography at 40 Myr ago, built from the compilation of recently published reconstructions6,45,46,47. b, Palaeogeography at 34 Myr ago, extracted from another study49, showing a slightly lower resolution. The main differences in the map for 34 Myr ago are the retreat of the Tarim Sea, the northward motion of India and the eastward extrusion of Indochina. Note also that the reconstruction for 34 Myr ago shows higher altitudes in northern China and shallower marine depths in the Arctic Ocean and in the equatorial seas north to Australia as a result of the lower resolution.

Extended Data Figure 2 Stratigraphic log of the Mahalagou Formation in the Shuiwan section.

The figure shows lithology, magnetostratigraphy with correlation to the geomagnetic timescale7,37,38, and clastic grain-size distributions through time.

Extended Data Figure 3 Quartz grain surface textures from red mudstone samples of the Shuiwan section.

af, SEM pictures displaying smooth precipitation surfaces (SMS; a, d), adhering clay particles (ACP; b, e, f), upturned plates (UP; b, f), and dish-shaped depression (DSD; c, d).

Extended Data Figure 4 Summer insolation during the Middle–late Eocene.

Data are averaged over Asia (0–45°N, 45–120°E), calculated from Earth’s orbital parameters of the 45–34 Myr period50, compared with the summer insolation of the warm austral and warm boreal scenarios.

Extended Data Figure 5 Diagenetic screening of Burmese fossil material.

a, Cathodoluminescence image of a shell fragment from the Eocene Pondaung Formation. Blue colour indicates a predominance of pure aragonite in the shell material; note the absence of red spots that are typical of calcite. Growth lines are well defined in the outer and inner layers of the shell. b, c, SEM pictures of a Pondaung shell fragment at low (b) and high (c) magnification. The excellent preservation of the aragonitic crossed laminar structure within the central layer of the shell indicates the absence of recrystallization. d, Comparison of the oxygen isotopic composition of the phosphate (δ18Op) and carbonate (δ18Oc) phases of single samples from the ten fossil individuals from the Pondaung Formation. Results fall in the range of the modern mammals, which is consistent with an absence of diagenetic impact on the isotopic composition of the fossil enamel24.

Extended Data Table 1 δ18O values of Burmese Eocene material compared with Holocene data from the Ganga plain 23,29, with associated surface-water δ18O values, reflecting the depletion in 18O of the local rainwater
Extended Data Table 2 Modern annual rainfall in Myanmar and central China compared with modelled annual rainfall in the late Eocene (40 Myr ago)

Supplementary information

Supplementary Data

This file contains Supplementary Tables 1-3. (XLS 54 kb)

Supplementary Data

This file contains Supplementary Tables 4-5. (XLS 82 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Licht, A., van Cappelle, M., Abels, H. et al. Asian monsoons in a late Eocene greenhouse world. Nature 513, 501–506 (2014). https://doi.org/10.1038/nature13704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13704

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing