Migrations and dynamics of the intertropical convergence zone

Abstract

Rainfall on Earth is most intense in the intertropical convergence zone (ITCZ), a narrow belt of clouds centred on average around six degrees north of the Equator. The mean position of the ITCZ north of the Equator arises primarily because the Atlantic Ocean transports energy northward across the Equator, rendering the Northern Hemisphere warmer than the Southern Hemisphere. On seasonal and longer timescales, the ITCZ migrates, typically towards a warming hemisphere but with exceptions, such as during El Niño events. An emerging framework links the ITCZ to the atmospheric energy balance and may account for ITCZ variations on timescales from years to geological epochs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Annual-mean precipitation, surface winds, and atmospheric energy balance.
Figure 2: Seasonal migration of the ITCZ over the Pacific and in the South Asian monsoon sector.
Figure 3: Holocene ITCZ migrations, Indian monsoon and interhemispheric temperature contrast.
Figure 4: Processes controlling zonal-mean ITCZ position.
Figure 5: Atmospheric meridional energy flux and energy flux equator.
Figure 6: Northern Hemisphere temperatures and ITCZ migrations during the last ice age.

References

  1. 1

    Waliser, D. E. & Gautier, C. A satellite-derived climatology of the ITCZ. J. Clim. 6, 2162–2174 (1993)

    ADS  Google Scholar 

  2. 2

    Philander, S. et al. Why the ITCZ is mostly north of the equator. J. Clim. 9, 2958–2972 (1996)

    ADS  Google Scholar 

  3. 3

    Gadgil, S. The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci. 31, 429–467 (2003)

    ADS  CAS  Google Scholar 

  4. 4

    Koutavas, A. & Lynch-Stieglitz, J. in The Hadley Circulation: Present, Past, and Future (eds Diaz, H. F. & Bradley, R. S. ) Vol. 21 Advances in Global Change Research 347–369 (Kluwer Academic, 2004)

    Google Scholar 

  5. 5

    Chiang, J. C. H. & Friedman, A. R. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci. 40, 383–412 (2012)This paper reviews evidence for the dependence of the ITCZ position on the interhemispheric temperature contrast.

    ADS  CAS  Google Scholar 

  6. 6

    Peterson, L. C., Haug, G. H., Hughen, K. A. & Rohl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000)

    ADS  CAS  PubMed  Google Scholar 

  7. 7

    Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. & Röhl, U. Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, 1304–1308 (2001)

    ADS  CAS  PubMed  Google Scholar 

  8. 8

    Koutavas, A., deMenocal, P. B., Olive, G. C. & Lynch-Stieglitz, J. Mid-Holocene El Niño-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34, 993–996 (2006)

    ADS  CAS  Google Scholar 

  9. 9

    Fleitmann, D. et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, 1737–1739 (2003)

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Fleitmann, D. et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev. 26, 170–188 (2007)

    ADS  Google Scholar 

  11. 11

    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nature Geosci. 6, 213–217 (2013)

    ADS  CAS  Google Scholar 

  12. 12

    Clement, A. C., Hall, A. & Broccoli, A. J. The importance of precessional signals in the tropical climate. Clim. Dyn. 22, 327–341 (2004)

    Google Scholar 

  13. 13

    Cheng, H., Sinha, A., Wang, X., Cruz, F. W. & Edwards, R. L. The global paleomonsoon as seen through speleothem records from Asia and the Americas. Clim. Dyn. 39, 1045–1062 (2012)

    Google Scholar 

  14. 14

    Prell, W. L. & Kutzbach, J. E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360, 647–652 (1992)

    ADS  Google Scholar 

  15. 15

    Wanner, H. et al. Mid- to Late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008)

    ADS  Google Scholar 

  16. 16

    Chou, C. & Neelin, J. D. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Clim. 16, 406–425 (2003)

    ADS  Google Scholar 

  17. 17

    Xian, P. & Miller, R. L. Abrupt seasonal migration of the ITCZ into the summer hemisphere. J. Atmos. Sci. 65, 1878–1895 (2008)

    ADS  Google Scholar 

  18. 18

    Bordoni, S. & Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nature Geosci. 1, 515–519 (2008)

    ADS  CAS  Google Scholar 

  19. 19

    Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Change 54, 251–267 (2002)

    Google Scholar 

  20. 20

    Chiang, J. C. H. & Bitz, C. M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim. Dyn. 25, 477–496 (2005)

    Google Scholar 

  21. 21

    Broccoli, A. J., Dahl, K. A. & Stouffer, R. J. Response of the ITCZ to northern hemisphere cooling. Geophys. Res. Lett. 33, L01702 (2006)

    ADS  Google Scholar 

  22. 22

    Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008)

    ADS  Google Scholar 

  23. 23

    Kang, S. M., Frierson, D. M. W. & Held, I. M. The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci. 66, 2812–2827 (2009)This paper imposes cross-equatorial ocean energy transport in an idealized general circulation model and, following ref. 21, interprets ITCZ response through the atmosphere–ocean energy balance.

    ADS  Google Scholar 

  24. 24

    Frierson, D. M. W. & Hwang, Y.-T. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Clim. 25, 720–733 (2012)

    ADS  Google Scholar 

  25. 25

    Kang, S. M. & Held, I. M. Tropical precipitation, SSTs and the surface energy budget: a zonally symmetric perspective. Clim. Dyn. 38, 1917–1924 (2012)

    Google Scholar 

  26. 26

    Donohoe, A., Marshall, J., Ferreira, D. & McGee, D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the last glacial maximum. J. Clim. 26, 3597–3618 (2013)

    ADS  Google Scholar 

  27. 27

    Friedman, A. R., Hwang, Y.-T., Chiang, J. C. H. & Frierson, D. M. W. Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Clim. 26, 5419–5433 (2013)

    ADS  Google Scholar 

  28. 28

    Fučkar, N. S., Xie, S.-P., Farneti, R., Maroon, E. A. & Frierson, D. M. W. Influence of the extratropical ocean circulation on the Intertropical Convergence Zone in an idealized coupled general circulation model. J. Clim. 26, 4612–4629 (2013)

    ADS  Google Scholar 

  29. 29

    Hwang, Y.-T. & Frierson, D. M. W. Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl Acad. Sci. USA 110, 4935–4940 (2013)

    ADS  CAS  PubMed  Google Scholar 

  30. 30

    Marshall, J., Donohoe, A., Ferreira, D. & McGee, D. The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Clim. Dyn. 42, 1967–1979 (2014)This paper shows that the northward AMOC energy transport is primarily responsible for the mean position of the ITCZ north of the Equator.

    Google Scholar 

  31. 31

    Frierson, D. M. W. et al. Contribution of ocean overturning circulation to tropical rainfall peak in the northern hemisphere. Nature Geosci. 6, 940–944 (2013)

    ADS  CAS  Google Scholar 

  32. 32

    Kang, S. M., Held, I. M. & Xie, S.-P. Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Clim. Dyn. 42, 2033–2043 (2013)

    Google Scholar 

  33. 33

    Peixoto, J. P. & Oort, A. H. Physics of Climate (American Institute of Physics, 1992)

    Google Scholar 

  34. 34

    Neelin, J. D. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Weath. Rev. 115, 3–12 (1987)

    ADS  Google Scholar 

  35. 35

    Bischoff, T. & Schneider, T. Energetic constraints on the position of the Intertropical Convergence Zone. J. Clim. 27, 4937–4951 (2014)

    ADS  Google Scholar 

  36. 36

    Donohoe, A. & Battisti, D. S. The seasonal cycle of atmospheric heating and temperature. J. Clim. 26, 4962–4980 (2013)

    ADS  Google Scholar 

  37. 37

    Fasullo, J. T. & Trenberth, K. E. The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Clim. 21, 2313–2325 (2008)

    ADS  Google Scholar 

  38. 38

    Loeb, N. G. et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009)

    ADS  Google Scholar 

  39. 39

    Feulner, G., Rahmstorf, S., Levermann, A. & Volkwardt, S. On the origin of the surface air temperature difference between the hemispheres in Earth’s present-day climate. J. Clim. 26, 7136–7150 (2013)

    ADS  Google Scholar 

  40. 40

    Xie, S.-P. in The Hadley Circulation: Present, Past and Future (eds Diaz, H. F. & Bradley, R. S. ) Vol. 21 Advances in Global Change Research 121–152 (Kluwer Academic, 2004)This paper reviews how the shape of continents and atmosphere–ocean interactions can cause zonal asymmetries and displace the ITCZ north of the Equator.

    Google Scholar 

  41. 41

    Pauluis, O. Boundary layer dynamics and cross-equatorial Hadley circulation. J. Atmos. Sci. 61, 1161–1173 (2004)

    ADS  Google Scholar 

  42. 42

    Charney, J. G. A note on large-scale motions in the tropics. J. Atmos. Sci. 20, 607–609 (1963)

    ADS  Google Scholar 

  43. 43

    Lindzen, R. S. & Hou, A. Y. Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci. 45, 2416–2427 (1988)

    ADS  Google Scholar 

  44. 44

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011)

    ADS  Google Scholar 

  45. 45

    Harrison, E. F. et al. Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res. 95, 18687–18703 (1990)

    ADS  Google Scholar 

  46. 46

    Voigt, A., Stevens, B., Bader, J. & Mauritsen, T. Compensation of hemispheric albedo asymmetries by shifts of the ITCZ and tropical clouds. J. Clim. 27, 1029–1045 (2014)

    ADS  Google Scholar 

  47. 47

    Schott, F. A., McCreary, J. P., Jr & Johnson, G. C. in Earth’s Climate: The Ocean-Atmosphere Interaction Geophysical Monograph Series 147, 261–304 (American Geophysical Union, 2004)

    Google Scholar 

  48. 48

    Klinger, B. A. & Marotzke, J. Meridional heat transport by the subtropical cell. J. Phys. Oceanogr. 30, 696–705 (2000)

    ADS  Google Scholar 

  49. 49

    Held, I. M. The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci. 58, 943–948 (2001)

    ADS  Google Scholar 

  50. 50

    Jayne, S. R. & Marotzke, J. The dynamics of ocean heat transport variability. Rev. Geophys. 39, 385–411 (2001)

    ADS  Google Scholar 

  51. 51

    Webster, P. J. in The Asian Monsoon (ed. Wang, B. ) 3–66 (Springer Praxis, 2006)

    Google Scholar 

  52. 52

    Caballero, R. & Langen, P. L. The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett. 32, L02705 (2005)

    ADS  Google Scholar 

  53. 53

    Schneider, T., O’Gorman, P. A. & Levine, X. J. Water vapor and the dynamics of climate changes. Rev. Geophys. 48, RG3001 (2010)This paper reviews how the hydrological cycle, the Hadley circulation, and extratropical energy transports vary with climate.

    ADS  Google Scholar 

  54. 54

    Held, I. M. & Hou, A. Y. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980)

    ADS  MathSciNet  Google Scholar 

  55. 55

    Walker, C. C. & Schneider, T. Eddy influences on Hadley circulations: simulations with an idealized GCM. J. Atmos. Sci. 63, 3333–3350 (2006)

    ADS  Google Scholar 

  56. 56

    Schneider, T. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 34, 655–688 (2006)

    ADS  CAS  Google Scholar 

  57. 57

    Schneider, T. & Bordoni, S. Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci. 65, 915–934 (2008)

    ADS  Google Scholar 

  58. 58

    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991)

    ADS  Google Scholar 

  59. 59

    Merlis, T. M., Schneider, T., Bordoni, S. & Eisenman, I. The tropical precipitation response to orbital precession. J. Clim. 26, 2010–2021 (2013)

    ADS  Google Scholar 

  60. 60

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010)

    ADS  Google Scholar 

  61. 61

    Dai, A. & Wigley, T. M. L. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 27, 1283–1286 (2000)

    ADS  Google Scholar 

  62. 62

    Liu, Z., Ostrenga, D., Teng, W. & Kempler, S. Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Am. Meteorol. Soc. 93, 1317–1325 (2012)

    ADS  Google Scholar 

  63. 63

    Trenberth, K. E., Caron, J. M., Stepaniak, D. P. & Worley, S. Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res. 107, 4065, http://dx.doi.org/10.1029/2000JD000298 (2002)

    Google Scholar 

  64. 64

    Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M. H. & Johns, T. C. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim. Dyn. 30, 455–465 (2008)

    Google Scholar 

  65. 65

    Byrne, M. P. & O’Gorman, P. A. Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett. 40, 5223–5227 (2013)

    ADS  Google Scholar 

  66. 66

    Broecker, W. S. & Putnam, A. E. Hydrologic impacts of past shifts of Earth’s thermal equator offer insight into those to be produced by fossil fuel CO2 . Proc. Natl Acad. Sci. USA 110, 16710–16715 (2013)

    ADS  CAS  PubMed  Google Scholar 

  67. 67

    Tett, S. F. B. et al. Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res 107, 4306 http://dx.doi.org/10.1029/2000JD000028 (2002)

    Google Scholar 

  68. 68

    Schneider, T. & Held, I. M. Discriminants of twentieth-century changes in Earth surface temperatures. J. Clim. 14, 249–254 (2001)

    ADS  Google Scholar 

  69. 69

    Thompson, D. W. J., Wallace, J. M., Kennedy, J. J. & Jones, P. D. An abrupt drop in northern hemisphere sea surface temperature around 1970. Nature 467, 444–447 (2010)

    ADS  CAS  PubMed  Google Scholar 

  70. 70

    Rotstayn, L. D. & Lohmann, U. Tropical rainfall trends and the indirect aerosol effect. J. Clim. 15, 2103–2116 (2002)This paper demonstrates that increased atmospheric aerosol loading can lead to southward ITCZ migrations and presents evidence that this occurred in the twentieth century.

    ADS  Google Scholar 

  71. 71

    Hwang, Y.-T., Frierson, D. M. W. & Kang, S. M. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett. 40, 2845–2850 (2013)

    ADS  Google Scholar 

  72. 72

    Tokinaga, H. & Xie, S.-P. Weakening of the equatorial Atlantic cold tongue over the past six decades. Nature Geosci. 4, 222–226 (2011)

    ADS  CAS  Google Scholar 

  73. 73

    Folland, C. K., Palmer, T. N. & Parker, D. E. Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320, 602–607 (1986)

    ADS  Google Scholar 

  74. 74

    Giannini, A., Saravanan, R. & Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302, 1027–1030 (2003)

    ADS  CAS  PubMed  Google Scholar 

  75. 75

    Held, I. M., Delworth, T. L., Lu, J., Findell, K. L. & Knutson, T. R. Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl Acad. Sci. USA 102, 17891–17896 (2005)This paper presents an overview of the mid-20th century Sahel drought, including its causes and predictions for the future.

    ADS  CAS  PubMed  Google Scholar 

  76. 76

    Bond, G. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993)

    ADS  Google Scholar 

  77. 77

    Broecker, W. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994)

    ADS  CAS  Google Scholar 

  78. 78

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013)

    ADS  CAS  PubMed  Google Scholar 

  79. 79

    Renssen, H. et al. The spatial and temporal complexity of the Holocene thermal maximum. Nature Geosci. 2, 411–414 (2009)

    ADS  CAS  Google Scholar 

  80. 80

    Arbuszewski, J. A., deMenocal, P. B., Cléroux, C., Bradtmiller, L. & Mix, A. Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum. Nature Geosci. 6, 959–962 (2013)This paper infers ITCZ migrations from reconstructions of ocean salinity, which diversifies evidence for ITCZ migrations and may eventually allow reconstructions of rainfall at the ITCZ.

    ADS  CAS  Google Scholar 

  81. 81

    deMenocal, P. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000)

    ADS  Google Scholar 

  82. 82

    Baker, P. A. et al. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698–701 (2001)

    ADS  CAS  PubMed  Google Scholar 

  83. 83

    Jones, P. D., Briffa, K. R., Barnett, T. P. & Tett, S. F. B. High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures. Holocene 8, 455–471 (1998)

    ADS  Google Scholar 

  84. 84

    Linsley, B. K., Dunbar, R. B., Wellington, G. M. & Mucciarone, D. A. A coral-based reconstruction of Intertropical Convergence Zone variability over Central America since 1707. J. Geophys. Res. 99, 9977–9994 (1994)

    ADS  Google Scholar 

  85. 85

    Sachs, J. P. et al. Southward movement of the Pacific Intertropical Convergence Zone AD 1400–1850. Nature Geosci. 2, 519–525 (2009)This paper presents evidence that the ITCZ across the Pacific was farther south during the Little Ice Age.

    ADS  CAS  Google Scholar 

  86. 86

    Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O. & Svensson, A. Millennial-scale variability during the last glacial: The ice core record. Quat. Sci. Rev. 29, 2828–2838 (2010)

    ADS  Google Scholar 

  87. 87

    Blunier, T. et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–743 (1998)

    ADS  CAS  Google Scholar 

  88. 88

    Broecker, W. S. Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278, 1582–1588 (1997)

    ADS  CAS  PubMed  Google Scholar 

  89. 89

    Wang, X. et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740–743 (2004)

    ADS  CAS  PubMed  Google Scholar 

  90. 90

    Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B. & Fernandez, D. P. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature 449, 452–455 (2007)

    ADS  CAS  PubMed  Google Scholar 

  91. 91

    Carolin, S. A. et al. Varied response of western Pacific hydrology to climate forcings over the last glacial period. Science 340, 1564–1566 (2013)

    ADS  CAS  PubMed  Google Scholar 

  92. 92

    Wang, Y. et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854–857 (2005)This paper shows that Asian monsoon rainfall weakened over the past 8 kyr.

    ADS  CAS  PubMed  Google Scholar 

  93. 93

    Wang, Y. et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 1090–1093 (2008)

    ADS  CAS  PubMed  Google Scholar 

  94. 94

    An, Z. S. The history and variability of the East Asian paleomonsoon climate. Quat. Sci. Rev. 19, 171–187 (2000)

    ADS  Google Scholar 

  95. 95

    Lin, J.-L. The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J. Clim. 20, 4497–4525 (2007)

    ADS  Google Scholar 

  96. 96

    Fedorov, A. V. et al. Patterns and mechanisms of early Pliocene warmth. Nature 496, 43–49 (2013)

    ADS  CAS  PubMed  Google Scholar 

  97. 97

    Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science 344, 84–87 (2014)

    ADS  CAS  PubMed  Google Scholar 

  98. 98

    Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. & Karlén, W. Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005)

    ADS  CAS  PubMed  Google Scholar 

  99. 99

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014)

    Google Scholar 

  100. 100

    Levine, X. J. & Schneider, T. Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci. 68, 769–783 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

J. Fasullo and K. Trenberth from the National Center for Atmospheric Research provided the energy flux data we used in Figs 1b and 5 and in some of the estimates in the text. The top-of-atmosphere radiative flux estimates in the text are based on NASA Clouds and the Earth’s Radiant Energy System (CERES) data, version CERES EBAF-TOA Ed2.7. S. Marcott provided the temperature reconstructions in Fig. 3, and M. Hell drew Figs 4 and 5. We are grateful for discussions with D. Sigman and N. Meckler and for comments on drafts by F. Ait-Chaalal, A. Donohoe, R. Ferrari, and J.-E. Lee. The research underlying this paper was supported by grants from the US National Science Foundation (numbers AGS-1019211, AGS-1049201 and AGS-1003614).

Author information

Affiliations

Authors

Contributions

All authors discussed the central concepts and ideas and processed and analysed data. T.S. and G.H.H. led the writing of the paper.

Corresponding author

Correspondence to Tapio Schneider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schneider, T., Bischoff, T. & Haug, G. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014). https://doi.org/10.1038/nature13636

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing