Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A massive galaxy in its core formation phase three billion years after the Big Bang


Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs1,2,3. Previous studies have found galaxies with high gas velocity dispersions4 or small apparent sizes5,6,7, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of  solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8, 9, 10, 11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structural properties of GOODS-N-774.
Figure 2: Velocity dispersion of GOODS-N-774.
Figure 3: Ultraviolet/far-infrared spectral energy distribution of GOODS-N-774.
Figure 4: Properties of GOODS-N-774 compared with quiescent galaxies.


  1. Daddi, E. et al. Passively evolving early-type galaxies at 1.4z2.5 in the Hubble Ultra Deep Field. Astrophys. J. 626, 680–697 (2005)

    CAS  ADS  Article  Google Scholar 

  2. Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H. & Burkert, A. The two phases of galaxy formation. Astrophys. J. 725, 2312–2323 (2010)

    CAS  ADS  Article  Google Scholar 

  3. van Dokkum, P. et al. Dense cores in galaxies out to z = 2.5 in SDSS, UltraVISTA, and the five 3D-HST/CANDELS fields: number density, evolution, and the apparent need for efficient cooling at high redshift. Astrophys. J. (submitted); preprint at (2014)

  4. Tacconi, L. et al. Submillimeter galaxies at z 2: evidence for major mergers and constraints on lifetimes, IMF, and CO-H2 conversion factor. Astrophys. J. 680, 246–262 (2008)

    CAS  ADS  Article  Google Scholar 

  5. Toft, S. et al. Submillimeter galaxies as progenitors of compact quiescent galaxies. Astrophys. J. 782, 68 (2014)

    ADS  Article  Google Scholar 

  6. Barro, G. et al. CANDELS+3D-HST: compact SFGs at z 2 – 3, the progenitors of the first quiescent galaxies. Preprint at (2013)

  7. Williams, C. C. et al. The progenitors of the compact early-type galaxies at high redshift. Astrophys. J. 780, 1 (2014)

    ADS  Article  Google Scholar 

  8. Bezanson, R., van Dokkum, P., van de Sande, J., Franx, M. & Kriek, M. Massive and newly dead: discovery of a significant population of galaxies with high-velocity dispersions and strong Balmer lines at z 1.5 from deep Keck spectra and HST/WFC3 imaging. Astrophys. J. 764, L8 (2013)

    ADS  Article  Google Scholar 

  9. van Dokkum, P. G., Kriek, M. & Franx, M. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186. Nature 460, 717–719 (2009)

    CAS  ADS  Article  Google Scholar 

  10. van de Sande, J. et al. Stellar kinematics of z 2 galaxies and the inside-out growth of quiescent galaxies. Astrophys. J. 771, 85 (2013)

    ADS  Article  Google Scholar 

  11. Belli, S., Newman, A. B. & Ellis, R. S. Velocity dispersions and dynamical masses for a large sample of quiescent galaxies at z > 1: improved measures of the growth in mass and size. Astrophys. J. 783, 117 (2014)

    ADS  Article  Google Scholar 

  12. Skelton, R. E. et al. 3D-HST WFC3-selected photometric catalogs in the five CANDELS/3D-HST fields: photometry, photometric redshifts and stellar masses. Preprint at (2014)

  13. van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size-mass distribution since z = 3. Astrophys. J. 788, 28 (2014)

    ADS  Article  Google Scholar 

  14. Kriek, M. et al. An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z = 2.2. Astrophys. J. 700, 221–231 (2009)

    CAS  ADS  Article  Google Scholar 

  15. Szomoru, D. et al. Confirmation of the compactness of a z = 1.91 quiescent galaxy with Hubble Space Telescope’s Wide Field Camera 3. Astrophys. J. 714, L244–L248 (2010)

    CAS  ADS  Article  Google Scholar 

  16. Kirkpatrick, A. et al. GOODS-Herschel: impact of active galactic nuclei and star formation activity on infrared spectral energy distributions at high redshift. Astrophys. J. 759, 139 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  17. Kennicutt, R. C., Jr Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998)

    CAS  ADS  Article  Google Scholar 

  18. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003)

    ADS  Article  Google Scholar 

  19. Wuyts, S. et al. Galaxy structure and mode of star formation in the SFR-mass plane from z 2.5 to z 0.1. Astrophys. J. 742, 96 (2011)

    ADS  Article  Google Scholar 

  20. da Cunha, E., Charlot, S. & Elbaz, D. A simple model to interpret the ultraviolet, optical and infrared emission from galaxies. Mon. Not. R. Astron. Soc. 388, 1595–1617 (2008)

    CAS  ADS  Article  Google Scholar 

  21. Kennicutt, R. C., Jr The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541 (1998)

    CAS  ADS  Article  Google Scholar 

  22. Dekel, A. et al. Toy models for galaxy formation versus simulations. Mon. Not. R. Astron. Soc. 435, 999–1019 (2013)

    ADS  Article  Google Scholar 

  23. Maiolino, R. et al. AMAZE. I. The evolution of the mass-metallicity relation at z > 3. Astron. Astrophys. 488, 463–479 (2008)

    ADS  Article  Google Scholar 

  24. Leja, J. et al. Exploring the chemical link between local ellipticals and their high-redshift progenitors. Astrophys. J. 778, L24 (2013)

    ADS  Article  Google Scholar 

  25. Dekel, A. & Burkert, A. Wet disk contraction to galactic blue nuggets and quenching to red nuggets. Mon. Not. R. Astron. Soc. 438, 1870 (2014)

    ADS  Article  Google Scholar 

  26. Erb, D. K. et al. α observations of a large sample of galaxies at z 2: implications for star formation in high-redshift galaxies. Astrophys. J. 647, 128–139 (2006)

    CAS  ADS  Article  Google Scholar 

  27. Gilli, R. et al. ALMA reveals a warm and compact starburst around a heavily obscured supermassive black hole at z = 4.75. Astron. Astrophys. 562, A67 (2014)

    Article  Google Scholar 

  28. Wang, W.-H., Barger, A. J. & Cowie, L. L. A Ks and IRAC selection of high-redshift extremely red objects. Astrophys. J. 744, 155 (2012)

    ADS  Article  Google Scholar 

  29. Barro, G. et al. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z2: high velocity dispersions in progenitors of compact quiescent galaxies. Preprint at (2014)

  30. Grogin, N. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011)

    ADS  Article  Google Scholar 

  31. Koekemoer, A. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey — the Hubble Space Telescope observations, imaging data products and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011)

    ADS  Article  Google Scholar 

  32. Whitaker, K. et al. The NEWFIRM medium-band survey: photometric catalogs, redshifts, and the bimodal color distribution of galaxies out to z 3. Astrophys. J. 735, 86 (2011)

    ADS  Article  Google Scholar 

  33. Lutz, D. et al. PACS Evolutionary Probe (PEP) - a Herschel key program. Astron. Astrophys. 532, A90 (2011)

    Article  Google Scholar 

  34. Elbaz, D. et al. GOODS-Herschel: an infrared main sequence for star-forming galaxies. Astron. Astrophys. 533, A119 (2011)

    Article  Google Scholar 

  35. Brammer, G. B. et al. 3D-HST: a wide-field grism spectroscopic survey with the Hubble Space Telescope. Astrophys. J. 200, 13 (2012)

    Article  Google Scholar 

  36. Tremonti, C. et al. The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the Sloan Digital Sky Survey. Astrophys. J. 613, 898 (2004)

    CAS  ADS  Article  Google Scholar 

  37. Steidel, C. et al. Strong nebular line ratios in the spectra of z 2–3 star-forming galaxies: first results from KBSS-MOSFIRE. Astrophys. J. (submitted); preprint at (2014)

  38. Alexander, D. et al. The Chandra Deep Field North Survey. XIII. 2 Ms point-source catalogs. Astron. J. 126, 539 (2003)

    ADS  Article  Google Scholar 

  39. Grimm, H.-J., Gilfanov, M. & Sunyaev, R. High-mass X-ray binaries as a star formation rate indicator in distant galaxies. Mon. Not. R. Astron. Soc. 339, 793 (2003)

    ADS  Article  Google Scholar 

  40. Bertin, G., Ciotti, L. & Del Principe, M. Weak homology of elliptical galaxies. Astron. Astrophys. 386, 149–168 (2002)

    ADS  Article  Google Scholar 

  41. Trujillo, I. et al. The size evolution of galaxies since z 3: combining SDSS, GEMS, and FIRES. Astrophys. J. 650, 18–41 (2006)

    CAS  ADS  Article  Google Scholar 

  42. Toft, S. et al. Hubble Space Telescope and Spitzer imaging of red and blue galaxies at z 2.5: a correlation between size and star formation activity from compact quiescent galaxies to extended star-forming galaxies. Astrophys. J. 671, 285–302 (2007)

    CAS  ADS  Article  Google Scholar 

  43. van Dokkum, P. G. et al. Confirmation of the remarkable compactness of massive quiescent galaxies at z 2.3: early-type galaxies did not form in a simple monolithic collapse. Astrophys. J. 677, L5–L8 (2008)

    ADS  Article  Google Scholar 

  44. Cimatti, A. et al. GMASS ultradeep spectroscopy of galaxies at z 2. II. Superdense passive galaxies: how did they form and evolve? Astron. Astrophys. 482, 21–42 (2008)

    CAS  ADS  Article  Google Scholar 

  45. Newman, A. B., Ellis, R. S., Treu, T. & Bundy, K. Keck spectroscopy of z > 1 field spheroidals: dynamical constraints on the growth rate of red “nuggets”. Astrophys. J. 717, L103–L107 (2010)

    ADS  Article  Google Scholar 

  46. Förster Schreiber, N. M. et al. The SINS survey: SINFONI integral field spectroscopy of z 2 star-forming galaxies. Astrophys. J. 706, 1364–1428 (2009)

    ADS  Article  Google Scholar 

Download references


Support from STScI grant GO-1277 is acknowledged.

Author information

Authors and Affiliations



E.N. obtained the data, led the analysis and the interpretation, and wrote the manuscript. P.v.D. contributed to the analysis and the interpretation. M.F. contributed to the interpretation. I.M. reduced the WFC3 imaging. G.B. and I.M. reduced the grism spectroscopy. K.W. and R.S. led the photometric analysis. All authors commented on the manuscript.

Corresponding author

Correspondence to Erica Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Linewidths of z ≈ 2 star-forming and quiescent galaxies.

The linewidth of GOODS-N-774 (open box) is among the highest measured for a normal star-forming galaxy at high redshift in Hα emission26,46 (light blue) or CO emission4 (SMGs; dark blue). The gas velocity dispersion is similar to the median stellar velocity dispersion of 304 km s−1 in a sample of quiescent galaxies at z = 1.5–2.2 with median mass of (refs 8, 9, 10, 11; red).

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nelson, E., van Dokkum, P., Franx, M. et al. A massive galaxy in its core formation phase three billion years after the Big Bang. Nature 513, 394–397 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing