Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition

An Erratum to this article was published on 28 January 2015

Abstract

Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene–Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening1,2,3,4, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene–Oligocene transition have been interpreted as a unique signature of gateway opening2,4, but at present both mechanisms remain possible. Here, using a coupled ocean–atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown—not gateway opening—caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atlantic Ocean δ18O records compiled for the EOT.
Figure 2: Ocean temperature and δ18O anomalies.
Figure 3: Diagnostics for the mechanism for deep ocean cooling due to glaciation.
Figure 4: Zonally averaged poleward ocean heat transport.

Similar content being viewed by others

References

  1. Kennett, J. P. Cenozoic evolution of Antarctic glaciations, the circum-Antarctic ocean and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3860 (1977)

    Article  CAS  ADS  Google Scholar 

  2. Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216 (2009)

    Article  ADS  Google Scholar 

  3. Katz, M. E. et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geosci. 1, 329–334 (2008)

    Article  CAS  ADS  Google Scholar 

  4. Katz, M. E. et al. Impact of Antarctic circumpolar current development on Late Paleogene ocean structure. Science 332, 1076–1079 (2011)

    Article  CAS  ADS  Google Scholar 

  5. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003)

    Article  CAS  ADS  Google Scholar 

  6. Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011)

    Article  CAS  ADS  Google Scholar 

  7. Liu, Z. et al. Global cooling during the Eocene–Oligocene climate transition. Science 323, 1187–1190 (2009)

    Article  CAS  ADS  Google Scholar 

  8. Houben, A. J. et al. Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation. Science 340, 341–344 (2013)

    Article  CAS  ADS  Google Scholar 

  9. Toggweiler, J. R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep Sea Res. Oceanogr. Res. Pap. 42, 477–500 (1994)

    Article  ADS  Google Scholar 

  10. Sijp, W. P., England, M. H. & Toggweiler, J. R. Effect of ocean gateway changes under greenhouse warmth. J. Clim. 22, 6639–6652 (2009)

    Article  ADS  Google Scholar 

  11. Pearson, P. N., Foster, G. L. & Wade, B. S. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461, 1110–1113 (2009)

    Article  CAS  ADS  Google Scholar 

  12. Pollard, D. & DeConto, R. M. Hysteresis in Cenozoic Antarctic ice sheet variations. Glob. Planet. Change 45, 9–21 (2005)

    Article  ADS  Google Scholar 

  13. Huber, M. & Nof, D. The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 9–28 (2006)

    Article  Google Scholar 

  14. Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D. & Zhang, Z. S. Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current. Paleoceanography 27, PA4201 (2012)

    Article  ADS  Google Scholar 

  15. Lawver, L. A., Gahagan, L. M. & Dalziel, I. W. D. in Tectonic, Climatic, and Cryospheric Evolution of the Antarctic Peninsula (eds Anderson, J. B. & Wellner, J. S. ) 5–33 (Am. Geophys. Un. Spec. Publ. 63, 2011)

    Google Scholar 

  16. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    Article  CAS  ADS  Google Scholar 

  17. Miller, K. G. et al. in The Late Eocene Earth? Hothouse, Icehouse, and Impacts (eds Koeberl, C. & Montanari, A. ) 169–178 (Geol. Soc. Am. Spec. Pap. 452, 2009)

  18. Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene–Oligocene transition. Geology 36, 251–254 (2008)

    Article  CAS  ADS  Google Scholar 

  19. Bohaty, S. M., Zachos, J. C. & Delaney, L. M. Foraminiferal Mg/Ca evidence for Southern Ocean cooling across the Eocene–Oligocene transition. Earth Planet. Sci. Lett. 317–318, 251–261 (2012)

    Article  ADS  Google Scholar 

  20. Hren, M. T. et al. Terrestrial cooling in Northern Europe during the Eocene–Oligocene transition. Proc. Natl Acad. Sci. USA 110, 7562–7567 (2013)

    Article  CAS  ADS  Google Scholar 

  21. Huber, M. & Caballero, R. The early Eocene equable climate problem revisited. Clim. Past 7, 603–633 (2011)

    Article  Google Scholar 

  22. Goldner, A., Huber, M. & Caballero, R. Does Antarctic glaciation cool the world? Clim. Past 9, 173–189 (2013)

    Article  Google Scholar 

  23. Sijp, W. P., England, M. H. & Huber, M. Effect of the deepening of the Tasman Gateway on the global ocean. Paleoceanography 26, PA4207 (2011)

    Article  ADS  Google Scholar 

  24. DeConto, R., Pollard, D. & Harwood, D. Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography 22, PA3214 (2007)

    Article  ADS  Google Scholar 

  25. Foster, G. L. & Rohling, E. J. Relationship between sea level and climate forcing by CO2 on geological timescales. Proc. Natl Acad. Sci. USA 110, 1209–1214 (2013)

    Article  CAS  ADS  Google Scholar 

  26. Hill, D. J. et al. Paleogeographic controls on the onset of the Antarctic circumpolar current. Geophys. Res. Lett. 40, 5199–5204 (2013)

    Article  ADS  Google Scholar 

  27. Bijl, P. K. et al. Eocene cooling linked to early flow across the Tasmanian Gateway. Proc. Natl Acad. Sci. USA 110, 9645–9650 (2013)

    Article  CAS  ADS  Google Scholar 

  28. Lyle, M., Gibbs, S., Moore, T. C., Jr & Rea, D. K. Late Oligocene initiation of the Antarctic circumpolar current: evidence from the South Pacific. Geology 35, 691–694 (2007)

    Article  ADS  Google Scholar 

  29. Dalziel, I. W. D. Drake Passage and the Scotia arc: a tortuous space–time gateway for the Antarctic Circumpolar Current. Geology 42, 367–368 (2014)

    Article  ADS  Google Scholar 

  30. Zachos, J. C. & Kump, L. R. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Global Planet. Change 47, 51–66 (2005)

    Article  ADS  Google Scholar 

  31. Gent, P. R. et al. The Community Climate System Model version 4. J. Clim. 24, 4973–4991 (2011)

    Article  ADS  Google Scholar 

  32. Lawrence, D. M. et al. The CCSM4 land simulation, 1850–2005: assessment of surface climate and new capabilities. J. Clim. 25, 2240–2260 (2012)

    Article  ADS  Google Scholar 

  33. Bitz, C. M. et al. Climate sensitivity of the community climate system model version 4. J. Clim. 25, 3053–3070 (2012)

    Article  ADS  Google Scholar 

  34. Large, G. W., Danabasoglu, G., McWilliams, J. C., Gent, P. R. & Bryan, F. O. Equatorial circulation in a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr. 31, 518–536 (2001)

    Article  ADS  Google Scholar 

  35. Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990)

    Article  ADS  Google Scholar 

  36. Jochum, M. Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res. 114, C01010 (2009)

    Article  ADS  Google Scholar 

  37. Ferrari, R. & Wunsch, C. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41, 253–282 (2009)

    Article  ADS  Google Scholar 

  38. Danabasoglu, G., Ferrari, R. & McWilliams, J. C. Sensitivity of an ocean general circulation model to a parameterization of near-surface eddy fluxes. J. Clim. 21, 1192–1208 (2008)

    Article  ADS  Google Scholar 

  39. Fox-Kemper, B., Ferrari, R. & Hallberg, R. Parameterization of mixed layer eddies. I. Theory and diagnosis. J. Phys. Oceanogr. 38, 1145–1165 (2008)

    Article  ADS  Google Scholar 

  40. Large, W. G. & Danabasoglu, G. Attribution and impacts of upper-ocean biases in CCSM3. J. Clim. 19, 2325–2346 (2006)

    Article  ADS  Google Scholar 

  41. Ali, J. R. & Huber, M. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463, 653–656 (2010)

    Article  CAS  ADS  Google Scholar 

  42. Heavens, N. G., Shields, C. A. & Mahowald, N. M. A paleogeographic approach to aerosol prescription in simulations of deep time climate. J. Adv. Model. Earth Syst. 4, M11002 (2012)

    Article  ADS  Google Scholar 

  43. Wilson, D. S., Pollard, D., DeConto, R. M., Jamieson, S. S. R. & Luyendyk, B. P. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophys. Res. Lett. 40, 4305–4309 (2013)

    Article  ADS  Google Scholar 

  44. Eldrett, J. S., Greenwood, D. R., Harding, I. C. & Huber, M. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459, 969–973 (2009)

    Article  CAS  ADS  Google Scholar 

  45. Hill, D. J. et al. Paleogeographic controls on the onset of the Antarctic circumpolar current. Geophys. Res. Lett. 40, 5199–5204 (2013)

    Article  ADS  Google Scholar 

  46. Broecker, W. S. The salinity contrast between the Atlantic and Pacific oceans during glacial time. Paleoceanography 4, 207–212 (1989)

    Article  ADS  Google Scholar 

  47. Knorr, G. & Lohmann, G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geosci. 7, 376–381 (2014)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

A.G. was funded by a Graduate Assistance in Areas of National Need (GAANN) fellowship through the Computational Sciences and Engineering Program at Purdue University. M.H. and N.H. were supported by National Science Foundation (NSF) P2C2 grants OCE 0902882 and EAR 1049921. Computing was performed on Rosen Center for Advanced Computing resources on the Hansen and Coates cluster at Purdue University. Proxy records were compiled from refs 2, 4, and specific records and references are described in extended data. The CESM model is supported and developed by the National Center for Atmospheric Research, which is supported by the NSF.

Author information

Authors and Affiliations

Authors

Contributions

A.G. conducted the EOT simulations, recompiled the proxy record data and wrote the manuscript. N.H. and M.H. helped compile the proxy record data and helped with writing the manuscript.

Corresponding authors

Correspondence to A. Goldner or M. Huber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Ocean temperature and δ18O anomalies.

ac, Zonally averaged temperature anomalies (°C) averaged over all longitudes: Glaciated minus unglaciated cases (CO2 constant at 560 p.p.m.) (a), 1,120 minus 560 p.p.m. CO2 cases (both unglaciated) (b), and unglaciated case with 1,120 p.p.m. CO2 minus glaciated case with 560 p.p.m. CO2 (c). df, δ18O comparisons (per mil) zonally averaged over the Atlantic basin; otherwise as in ac.

Extended Data Figure 2 Ocean temperature and δ18O anomalies in Atlantic Ocean basin due to Southern Ocean gateway opening.

a, Temperature anomaly (°C) for both gateways opened minus both gateways closed. b, Temperature anomaly for DP and TG closed minus DP open and TG closed. c, Temperature anomaly for DP and TG open minus TG closed DP open. df, As in ac, except for δ18O.

Extended Data Figure 3 Absolute sea-ice and anomalous sea surface temperature.

a, b, Sea ice fraction for glaciated (a) and unglaciated (b) cases. c, Glaciated minus unglaciated sea surface temperature anomaly. All simulations with 1,120 p.p.m. CO2.

Extended Data Figure 4 Absolute salinity fields.

Salinity (colour contour) and salinity flux (vectors) for glaciated late Eocene (a) and unglaciated cases (b) at 1,120 p.p.m. CO2.

Extended Data Figure 5 Absolute sea level pressure and surface wind.

Sea level pressure (colour contour) and surface wind (vectors) for glaciated (a) and unglaciated (b) cases at 1,120 p.p.m. CO2.

Extended Data Figure 6 Absolute Ekman pumping and transport.

Ekman pumping contour and Ekman transport overlaid as vectors for glaciated (a) and unglaciated (b) cases at 1,120 p.p.m. CO2. See the calculations for Ekman pumping and transport in Methods.

Extended Data Figure 7 Absolute ocean currents.

Zonally averaged ocean currents (meridional and vertical) across the Atlantic Ocean. The vertical ocean velocities are scaled by a constant coefficient (500) for plotting purposes. Glaciated (a) and unglaciated (b) cases at 1,120 p.p.m. CO2.

Extended Data Figure 8 Meridional overturning circulation.

Zonally averaged meridional overturning circulation anomaly for glaciated (a) unglaciated, (b) and glaciated minus unglaciated (c) case anomaly at 1,120 p.p.m. CO2.

Extended Data Figure 9 Depth–latitude plot for the non-interpolated and interpolated δ18O proxy record anomalies.

a, Raw δ18O anomalies. b, Interpolated δ18O anomalies (see Extended Data Table 1).

Extended Data Table 1 Site locality name, palaeolatitude, palaeolongitude, palaeodepth and δ18O

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldner, A., Herold, N. & Huber, M. Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature 511, 574–577 (2014). https://doi.org/10.1038/nature13597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13597

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing