Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Limits on fundamental limits to computation

Abstract

An indispensable part of our personal and working lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the past fifty years. Such Moore scaling now requires ever-increasing efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and increase our understanding of integrated-circuit scaling, here I review fundamental limits to computation in the areas of manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, I recapitulate how some limits were circumvented, and compare loose and tight limits. Engineering difficulties encountered by emerging technologies may indicate yet unknown limits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 3: The evolution of metallic wire stacks from 1997 to 2010. Stacks are ordered by the designation of the semiconductor technology node.
Figure 1: As a metal oxide–semiconductor field effect transistor (MOSFET) shrinks, the gate dielectric (yellow) thickness approaches several atoms (0.5 nm at the 22-nm technology node).
Figure 2: As a MOSFET transistor shrinks, the shape of its electric field departs from basic rectilinear models, and the level curves become disconnected.
Figure 4

References

  1. Cavin, R. K., Lugli, P. & Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 100, 1720–1749 (2012)This paper reviews the historical effects and benefits of Moore’s law, discusses challenges to further growth, and offers several strategies to maintain progress in electronics.

    Article  Google Scholar 

  2. Chien, A. A. & Karamcheti, V. Moore’s law: the first ending and a new beginning. IEEE Computer 46, 48–53 (2013)

    Article  Google Scholar 

  3. Herken, R. (ed.) The Universal Turing Machine: A Half-Century Survey 2nd edn (Springer, 2013)

    MATH  Google Scholar 

  4. Andreesen, M. Why software is eating the world. The Wall Street Journal http://online.wsj.com/news/articles/SB10001424053111903480904576512250915629460 (August 2011)

  5. Padua D. A., ed. Encyclopedia of Parallel Computing (Springer, 2011)

  6. Shaw, D. E. Anton: a special-purpose machine that achieves a hundred-fold speedup in biomolecular simulations. In Proc. Int. Symp. on High Performance Distributed Computing 129–130 (IEEE, 2013)

  7. Hameed, R. et al. Understanding sources of inefficiency in general-purpose chips. Commun. ACM 54, 85–93 (2011)

    Article  Google Scholar 

  8. Cong, J., Reinman, G., Bui, A. T. & Sarkar, V. Customizable domain-specific computing. IEEE Des. Test Comput. 28, 6–15 (2011)

    Article  Google Scholar 

  9. Mernik, M., Heering, J. & Sloane, A. M. When and how to develop domain-specific languages. ACM Comput. Surv. 37, 316–344 (2005)

    Article  Google Scholar 

  10. Olukotun, K. Beyond parallel programming with domain specific languages. In Proc. Symp. on Principles and Practice of Parallel Programming 179180 (ACM, 2014)

  11. Aaronson, S. & Shi, Y. Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51, 595–605 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jain, R., Ji, Z., Upadhyay, S. & Watrous, J. QIP = PSPACE. Commun. ACM 53, 102–109 (2010)

    Article  Google Scholar 

  13. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2011)

    MATH  Google Scholar 

  14. International Technology Roadmap for Semiconductors (ITRS). http://www.itrs.net/ (2013)Documents available at this website describe in detail the current state of the art in integrated circuits and near-term milestones.

  15. Sylvester, D. & Keutzer, K. A global wiring paradigm for deep submicron design. IEEE Trans. CAD 19, 242–252 (2000)

    Article  Google Scholar 

  16. A Quantum Information Science and Technology Roadmap Los Alamos Technical Report LA-UR-04–1778, http://qist.lanl.gov (2004)

  17. Meindl, J. Low power microelectronics: retrospective and prospect. Proc. IEEE 83, 619–635 (1995)

    Article  Google Scholar 

  18. Davis, J. A. et al. Interconnect limits on gigascale integration (GSI) in the 21st Century. Proc. IEEE 89, 305–324 (2001)This paper discusses physical limits to scaling interconnects in integrated circuits, classifying them into fundamental, material, device, circuit and system limits.

    Article  CAS  Google Scholar 

  19. Ma, X. & Arce, G. R. Computational Lithography (Wiley, 2011)

    Google Scholar 

  20. Mazzola, L. Commercializing nanotechnology. Nature Biotechnol. 21, 1137–1143 (2003)

    Article  CAS  Google Scholar 

  21. Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 1–4 (1965)

    Google Scholar 

  22. Bohr, M. Interconnect scaling—the real limiter to high performance ULSI. In Proc. Int. Elec. Device Meeting 241–244 (IEEE, 1995)This paper explains why wires, rather than gates, have become the main limiter to the performance of ultra-large integrated circuits.

  23. Shelar, R. & Patyra, M. Impact of local interconnects on timing and power in a high performance microprocessor. IEEE Trans. CAD 32, 1623–1627 (2013)

    Article  Google Scholar 

  24. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Chang, M.-C. F., Roychowdhury, V. P., Zhang, L., Shin, H. & Qian, Y. RF/wireless interconnect for inter-and intra-chip communications. Proc. IEEE 89, 455–466 (2002)

    Google Scholar 

  26. Hisamoto, D. et al. FinFET—a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron. Dev. 47, 2320–2325 (2002)

    ADS  Google Scholar 

  27. Seabaugh, A. The tunneling transistor. IEEE Spectrum http://spectrum.ieee.org/semiconductors/devices/the-tunneling-transistor (2013)

  28. Ozdal, M. M., Burns, S. M. & Hu, J. Algorithms for gate sizing and device parameter selection for high-performance designs. IEEE Trans. CAD 31, 1558–1571 (2012)

    Article  Google Scholar 

  29. Rutenbar, R. A. Design automation for analog: the next generation of tool challenges. In Proc. Int. Conf. Computer-Aided Design of Integrated Circuits 458–460 (IEEE, 2006)

  30. Rutenbar, R. A. Analog layout synthesis: what’s missing? In Proc. Int. Symp. Physical Design of Integrated Circuits 43 (ACM, 2010)

  31. Ho, R., Mai, K., Kapadia, H. & Horowitz, M. Interconnect scaling implications for CAD. In Proc. Int. Conf. Computer-Aided Design of Integrated Circuits 425–429 (IEEE, 1999)

    Google Scholar 

  32. Markov, I. L., Hu, J. & Kim, M.-C. Progress and challenges in VLSI placement research. In Proc. Int. Conf. Computer-Aided Design of Integrated Circuits 275–282 (IEEE, 2012)

  33. Puri, R. Opportunities and challenges for high-performance CPU designs and design automation. In Proc. Int. Symp. Physical Design of Integrated Circuits 179 (ACM, 2013)

  34. Lavagno, L., Martin, G. & Scheffer, L. Electronic Design Automation for Integrated Circuits Handbook (CRC Press, 2006)

    Google Scholar 

  35. Chinnery, D. G. & Keutzer, K. Closing the Gap Between ASIC and Custom: Tools And Techniques For High-Performance ASIC Design (Springer, 2004)

    Google Scholar 

  36. Chinnery, D. G. & Keutzer, K. Closing the Power Gap between ASIC and Custom: Tools and Techniques for Low Power Design (Springer, 2007)

    Book  Google Scholar 

  37. Sangiovanni-Vincentelli, A. L., Carloni, L. P., De Bernardinis, F. & Sgroi, M. Benefits and challenges for platform-based design. In Proc. Design Automation Conf. 409–414 (ACM, 2004)

  38. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bérut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)

    Article  ADS  PubMed  CAS  Google Scholar 

  40. Bennett, C. H. & Landauer, R. The fundamental limits of computation. Sci. Am. 253, 48–56 (1985)

  41. Aharonov, Y. & Bohm, D. Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Lloyd, S. Ultimate physical limits on computation. Nature 406, 1047–1054 (2000)This paper derives several ab initio limits to computation, points out that modern quantum devices operate close to their energy-efficiency limits, but concludes that resulting large-scale limits are very loose.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Ren, J. & Semenov, V. K. Progress with physically and logically reversible superconducting digital circuits. IEEE Trans. Appl. Supercond. 21, 780–786 (2011)

    Article  ADS  CAS  Google Scholar 

  44. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)

    Article  ADS  CAS  Google Scholar 

  45. Saeedi, M. & Markov, I. L. Synthesis and optimization of reversible circuits — a survey. ACM Comput. Surv. 45 (2). 21 (2013)

    Article  MATH  Google Scholar 

  46. Borkar, S. Thousand-core chips: a technology perspective. In Proc. Design Automation Conf. 746–749 (ACM, 2007)This paper describes Intel’s thousand-core CPU architecture with an emphasis on fine-grain power management, memory bandwidth, on-die networks, and system resiliency.

  47. Rabaey, J. M., Chandrakasan, A. & Nikolic, B. Digital Integrated Circuits A Design Perspective (Pearson Education, 2003)

    Google Scholar 

  48. Bohr, M. A 30 year retrospective on Dennard’s MOSFET scaling paper. IEEE Solid-State Circ. Soc. Newsl. 12, 11–13 (2007)This paper reviews power scaling of integrated circuits, which held for 30 years, but has now broken down.

    Article  Google Scholar 

  49. Taylor, M. B. Is dark silicon useful? harnessing the four horsemen of the coming dark silicon apocalypse. In Proc. Design Automation Conf. 1131–1136 (ACM, 2012)

  50. Esmaeilzadeh, H., Blem, E. R., St.-Amant, R., Sankaralingam, K. & Burger, D. Power challenges may end the multicore era. Commun. ACM 56, 93–102 (2013)

    Article  Google Scholar 

  51. Yeraswork, Z. 3D stacks and security key for IBM in server market. EE Times http://www.eetimes.com/document.asp?doc_id=1320403 (17 December 2013)

  52. Caldwell, A. E., Kahng, A. B. & Markov, I. L. Hierarchical whitespace allocation in top-down placement. IEEE Trans. Computer-Aided Design Integrated Circ. 22, 716–724 (2003)

    Google Scholar 

  53. Adya, S. N., Markov, I. L. & Villarrubia, P. G. On whitespace and stability in physical synthesis. Integration VLSI J. 39, 340–362 (2006)

    Article  Google Scholar 

  54. Saxena, P., Menezes, N., Cocchini, P. & Kirkpatrick, D. Repeater scaling and its impact on CAD. IEEE Trans. Computer-Aided Design Integrated Circ. 23, 451–463 (2004)

    Article  Google Scholar 

  55. Oestergaard, J., Okholm, J., Lomholt, K. & Toennesen, G. Energy losses of super-conducting power transmission cables in the grid. IEEE Trans. Appl. Supercond. 11, 2375 (2001)

    Article  ADS  Google Scholar 

  56. Pinckney, N. R. et al. Limits of parallelism and boosting in dim silicon. IEEE Micro 33, 30–37 (2013)

    Article  Google Scholar 

  57. Kim, S., Ziesler, C. H. & Papaefthymiou, M. C. Charge-recovery computing on silicon. IEEE Trans. Comput. 54, 651–659 (2005)

    Article  Google Scholar 

  58. Dreslinski, R. G., Wieckowski, M., Blaauw, D., Sylvester, D. & Mudge, T. Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc. IEEE 98, 253–266 (2010)

    Article  Google Scholar 

  59. Pendry, J. B. Quantum limits to the flow of information and entropy. J. Phys. Math. Gen. 16, 2161–2171 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  60. Blencowe, M. P. & Vitelli, V. Universal quantum limits on single-channel information, entropy, and heat flow. Phys. Rev. A 62, 052104 (2000)

    Article  ADS  Google Scholar 

  61. Whitney, R. S. Most efficient quantum thermoelectric at finite power output. Phys. Rev. Lett. 112, 130601 (2014)

    Article  ADS  PubMed  CAS  Google Scholar 

  62. Zhirnov, V. V., Cavin, R. K., Hutchby, J. A. & Bourianoff, G. I. Limits to binary logic switch scaling—a Gedanken model. Proc. IEEE 91, 1934–1939 (2003)

    Article  Google Scholar 

  63. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Krauss, L. M. & Starkman, G. D. Universal limits on computation. Preprint at http://arxiv.org/abs/astro-ph/0404510 (2004)

  65. Fisher, D. Your favorite parallel algorithms might not be as fast as you think. IEEE Trans. Comput. 37, 211–213 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  66. Amdahl, G. M. Computer architecture and Amdahl’s law. IEEE Computer 46, 38–46 (2013)

    Article  Google Scholar 

  67. Mak, W.-K. & Chu, C. Rethinking the wirelength benefit of 3-D integration. IEEE Trans. VLSI Syst. 20, 2346–2351 (2012)

    Article  Google Scholar 

  68. Lee, Y.-J., Morrow, P. & Lim, S. K. Ultra high density logic designs using transistor-level monolithic 3D integration. In Proc. Int. Conf. Computer-Aided Design of Integrated Circuits 539–546 (IEEE, 2012)

  69. Sherwin, M. S., Imamoglu, A. & Montroy Quantum computation with quantum dots and terahertz cavity quantum electrodynamics. Phys. Rev. A 60, 3508 (1999)

    Article  ADS  CAS  Google Scholar 

  70. Shulaker, M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Simonite, T. Intel’s laser chips could make data centers run better. MIT Technol. Rev. (4 September 2013)

  72. Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 20, 1330–1331 (2014)This paper shows how to define and measure quantum speedup, while avoiding pitfalls and overly optimistic results—an empirical study with a D-Wave 2 chip with up to 503 qubits finds no convincing evidence of speed-up.

    Google Scholar 

  73. Shin, S. W., Smith, G., Smolin, J. A. & Vazirani, U. How ‘quantum’ is the D-Wave machine? Preprint at http://arxiv.org/abs/1401.7087 (2014)

  74. Sipser, M. Introduction to the Theory of Computation 3rd edn (Cengage Learning, 2012)

    MATH  Google Scholar 

  75. Fortnow, L. The status of the P versus NP problem. Commun. ACM 52, 78–86 (2009)

    Article  Google Scholar 

  76. Markov, I. L. Know your limits: a review of ‘limits to parallel computation: P-completeness theory’. IEEE Design Test 30, 78–83 (2013)

    Article  Google Scholar 

  77. Aaronson, S. Guest column: NP-complete problems and physical reality. SIGACT (ACM Special Interest Group on Algorithms and Computation Theory) News 36, 30–52 (2005)This paper explores the possibility of efficiently solving NP-complete problems using analog, adiabatic and quantum computing, protein folding and soap bubbles, as well as other proposals for physics-based computing— it concludes that this is unlikely, but suggests other benefits of studying such proposals.

    Google Scholar 

  78. Vazirani, V. Approximation Algorithms (Springer, 2002)

    MATH  Google Scholar 

  79. Spielman, D. & Teng, S.-H. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. In Proc. Symp. Theory of Computing 296305 (ACM, 2001)

  80. Getov, V. Computing laws: origins, standing, and impact. IEEE Computer 46, 24–25 (2013)

    Article  Google Scholar 

  81. Metcalfe, B. Metcalfe’s law after 40 years of ethernet. IEEE Computer 46, 26–31 (2013)

    Article  Google Scholar 

  82. Ryan, P. S., Falvey, S. & Merchant, R. When the cloud goes local: the global problem with data localization. IEEE Computer 46, 54–59 (2013)

    Article  Google Scholar 

  83. Wenisch, T. F. & Buyuktosunoglu, A. Energy-aware computing. IEEE Micro 32, 6–8 (2012)

    Article  Google Scholar 

  84. Bachrach, J. & Beal, J. Developing spatial computers. Technical Report MITCSAIL-TR-2007–017 (MIT, 2007)

  85. Rosenbaum, D. Optimal quantum circuits for nearest-neighbor architectures. Preprint at http://arxiv.org/abs/1205.0036; in 8th Conf. on the Theory of Quantum Computation, Communication and Cryptography 294–307 (Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 2012)

  86. Patil, D., Azizi, O., Horowitz, M., Ho, R. & Ananthraman, R. Robust energy-efficient adder topologies. In Proc. IEEE Symp. on Computer Arithmetic 16–28 (IEEE, 2007)

  87. Brewer, E. CAP twelve years later: how the ‘rules’ have changed. IEEE Computer 45, 23–29 (2012)

    Article  Google Scholar 

  88. Demmel, J. Communication-avoiding algorithms for linear algebra and beyond. In Proc. Int. Parallel and Distributed Processing Symp. 585 (IEEE, 2013)

  89. Halfill, T. R. Tabula’s time machine. Microprocessor Report (29 March 2010)

  90. Dror, R. O. et al. Overcoming communication latency barriers in massively parallel scientific computation. IEEE Micro 31, 8–19 (2011)

    Article  Google Scholar 

  91. Dean, J. & Barroso, L. A. The tail at scale. Commun. ACM 56, 74–80 (2013)

    Article  Google Scholar 

  92. Barroso, L. A., Clidaras, J. & Hölzle, U. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines 2nd edn (Synthesis Lectures on Computer Architecture, Morgan & Claypool, 2013)

    Google Scholar 

  93. Balasubramonian, R., Jouppi, N. P. & Muralimanohar, N. Multi-Core Cache Hierarchies (Synthesis Lectures on Computer Architecture, Morgan & Claypool, 2011)

    Book  Google Scholar 

  94. Aaronson, S. & Wigderson, A. Algebrization: a new barrier in complexity theory. ACM Trans. Complexity Theory 1 (1), http://www.scottaaronson.com/papers/alg.pdf (2009)

  95. Avigad, J. & Harrison, J. Formally verified mathematics. Commun. ACM 57, 66–75 (2014)

    Article  Google Scholar 

  96. Asenov, A. Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 m MOSFETs: a 3-D “atomistic” simulation study. IEEE Trans. Electron. Dev. 45, 2505–2513 (1998)

    Article  ADS  CAS  Google Scholar 

  97. Miranda, M. The threat of semiconductor variability. IEEE Spectrum http://spectrum.ieee.org/semiconductors/design/the-threat-of-semiconductor-variability (2012)

  98. Naeemi, A. et al. BEOL scaling limits and next generation technology prospects. Proc. Design Automation Conf. 1–6. (ACM, 2014)

  99. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1173 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Semiconductor Research Corporation (SRC) Task 2264.001 (funded by Intel and IBM), a US Airforce Research Laboratory award (FA8750-11-2-0043), and a US National Science Foundation (NSF) award (1162087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor L. Markov.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Markov, I. Limits on fundamental limits to computation. Nature 512, 147–154 (2014). https://doi.org/10.1038/nature13570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13570

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing