Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Misaligned protoplanetary disks in a young binary star system

Subjects

Abstract

Many extrasolar planets follow orbits that differ from the nearly coplanar and circular orbits found in our Solar System; their orbits may be eccentric1 or inclined with respect to the host star’s equator2,3, and the population of giant planets orbiting close to their host stars suggests appreciable orbital migration4. There is at present no consensus on what produces such orbits. Theoretical explanations often invoke interactions with a binary companion star in an orbit that is inclined relative to the planet’s orbital plane4,5. Such mechanisms require significant mutual inclinations between the planetary and binary star orbital planes. The protoplanetary disks in a few young binaries are misaligned6,7,8,9,10,11,12, but often the measurements of these misalignments are sensitive only to a small portion of the inner disk, and the three-dimensional misalignment of the bulk of the planet-forming disk mass has hitherto not been determined. Here we report that the protoplanetary disks in the young binary system HK Tauri are misaligned by 60 to 68 degrees, such that one or both of the disks are significantly inclined to the binary orbital plane. Our results demonstrate that the necessary conditions exist for misalignment-driven mechanisms to modify planetary orbits, and that these conditions are present at the time of planet formation, apparently because of the binary formation process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observations of the CO(3–2) line in the HK Tau binary system.
Figure 2: Data, best-fit model and data–model difference for the disks around HK Tau A and B.
Figure 3: Posterior probability distribution for the angle Δ between the two disks’ angular momentum vectors.

Similar content being viewed by others

References

  1. Wu, Y. & Murray, N. Planet migration and binary companions: the case of HD 80606b. Astrophys. J. 589, 605–614 (2003)

    Article  ADS  Google Scholar 

  2. Winn, J. N., Fabrycky, D., Albrecht, S. & Johnson, J. A. Hot stars with hot Jupiters have high obliquities. Astrophys. J. 718, L145–L149 (2010)

    Article  ADS  Google Scholar 

  3. Albrecht, S. et al. Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. Astrophys. J. 757, 18 (2012)

    Article  ADS  Google Scholar 

  4. Fabrycky, D. & Tremaine, S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007)

    Article  CAS  ADS  Google Scholar 

  5. Batygin, K. A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature 491, 418–420 (2012)

    Article  CAS  ADS  Google Scholar 

  6. Stapelfeldt, K. R. et al. An edge-on circumstellar disk in the young binary system HK Tauri. Astrophys. J. 502, L65–L69 (1998)

    Article  ADS  Google Scholar 

  7. Koresko, C. D. A circumstellar disk in a pre–main-sequence binary star. Astrophys. J. 507, L145–L148 (1998)

    Article  ADS  Google Scholar 

  8. Roccatagliata, V. et al. Multi-wavelength observations of the young binary system Haro 6-10: the case of misaligned discs. Astron. Astrophys. 534, A33 (2011)

    Article  Google Scholar 

  9. Bohm, K. H. & Solf, J. A sub-arcsecond-scale spectroscopic study of the complex mass outflows in the vicinity of T Tauri. Astrophys. J. 430, 277–290 (1994)

    Article  ADS  Google Scholar 

  10. Duchêne, G., Ghez, A. M., McCabe, C. & Ceccarelli, C. The circumstellar environment of T Tauri S at high spatial and spectral resolution. Astrophys. J. 628, 832–846 (2005)

    Article  ADS  Google Scholar 

  11. Skemer, A. J. et al. Evidence for misaligned disks in the T Tauri triple system: 10 μm superresolution with MMTAO and Markov chains. Astrophys. J. 676, 1082–1087 (2008)

    Article  ADS  Google Scholar 

  12. Ratzka, T. et al. Spatially resolved mid-infrared observations of the triple system T Tauri. Astron. Astrophys. 502, 623–646 (2009)

    Article  ADS  Google Scholar 

  13. Monin, J. L., Menard, F. & Duchêne, G. Using polarimetry to check rotation alignment in PMS binary stars. Principles of the method and first results. Astron. Astrophys. 339, 113–122 (1998)

    ADS  Google Scholar 

  14. Jensen, E. L. N., Mathieu, R. D., Donar, A. X. & Dullighan, A. Testing protoplanetary disk alignment in young binaries. Astrophys. J. 600, 789–803 (2004)

    Article  CAS  ADS  Google Scholar 

  15. Moneti, A. & Zinnecker, H. Infrared imaging photometry of binary T Tauri stars. Astron. Astrophys. 242, 428–432 (1991)

    ADS  Google Scholar 

  16. Torres, R. M., Loinard, L., Mioduszewski, A. J. & Rodríguez, L. F. VLBA determination of the distance to nearby star-forming regions. III. HP Tau/G2 and the three-dimensional structure of Taurus. Astrophys. J. 698, 242–249 (2009)

    Article  ADS  Google Scholar 

  17. Andrews, S. M., Rosenfeld, K. A., Kraus, A. L. & Wilner, D. J. The mass dependence between protoplanetary disks and their stellar hosts. Astrophys. J. 771, 129 (2013)

    Article  ADS  Google Scholar 

  18. McCabe, C. et al. Spatially resolving the HK Tau B edge-on disk from 1.2 to 4.7 μm: a unique scattered light disk. Astrophys. J. 727, 90 (2011)

    Article  ADS  Google Scholar 

  19. Jensen, E. L. N. & Akeson, R. L. Protoplanetary disk mass distribution in young binaries. Astrophys. J. 584, 875–881 (2003)

    Article  ADS  Google Scholar 

  20. Duchêne, G., Menard, F., Stapelfeldt, K. & Duvert, G. A layered edge-on circumstellar disk around HK Tau B. Astron. Astrophys. 400, 559–565 (2003)

    Article  ADS  Google Scholar 

  21. Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962)

    Article  ADS  Google Scholar 

  23. Innanen, K. A., Zheng, J. Q., Mikkola, S. & Valtonen, M. J. The Kozai mechanism and the stability of planetary orbits in binary star systems. Astron. J. 113, 1915–1919 (1997)

    Article  ADS  Google Scholar 

  24. Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A. & Teyssandier, J. Secular dynamics in hierarchical three-body systems. Mon. Not. R. Astron. Soc. 431, 2155–2171 (2013)

    Article  ADS  Google Scholar 

  25. Bate, M. R. et al. Observational implications of precessing protostellar discs and jets. Mon. Not. R. Astron. Soc. 317, 773–781 (2000)

    Article  ADS  Google Scholar 

  26. Bate, M. R. Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. Mon. Not. R. Astron. Soc. 419, 3115–3146 (2012)

    Article  ADS  Google Scholar 

  27. Offner, S. S. R., Klein, R. I., McKee, C. F. & Krumholz, M. R. The effects of radiative transfer on low-mass star formation. Astrophys. J. 703, 131–149 (2009)

    Article  ADS  Google Scholar 

  28. Fragner, M. M. & Nelson, R. P. Evolution of warped and twisted accretion discs in close binary systems. Astron. Astrophys. 511, A77 (2010)

    Article  ADS  Google Scholar 

  29. Clarke, C. J. in Proc. IAU Symp. S240 Vol. 2 (eds Hartkopf, W. I., Guinan, E. F. & Harmanec, P. ) 337–346 (International Astronomical Union, 2007)

    Google Scholar 

  30. Offner, S. S. R., Kratter, K. M., Matzner, C. D., Krumholz, M. R. & Klein, R. I. The formation of low-mass binary star systems via turbulent fragmentation. Astrophys. J. 725, 1485–1494 (2010)

    Article  ADS  Google Scholar 

  31. Akeson, R. L. & Jensen, E. L. N. Circumstellar disks around binary stars in Taurus. Astrophys. J. 784, 62 (2014)

    Article  ADS  Google Scholar 

  32. Guilloteau, S. et al. A sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars. Astron. Astrophys. 549, A92 (2013)

    Article  Google Scholar 

  33. Hartmann, L., Calvet, N., Gullbring, E. & D'Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998)

    Article  ADS  Google Scholar 

  34. Rosenfeld, K. A., Andrews, S. M., Wilner, D. J., Kastner, J. H. & McClure, M. K. The structure of the evolved circumbinary disk around V4046 Sgr. Astrophys. J. 775, 136 (2013)

    Article  ADS  Google Scholar 

  35. Papaloizou, J. C. B. & Terquem, C. On the dynamics of tilted discs around young stars. Mon. Not. R. Astron. Soc. 274, 987–1001 (1995)

    ADS  Google Scholar 

  36. Larwood, J. D., Nelson, R. P., Papaloizou, J. C. B. & Terquem, C. The tidally induced warping, precession and truncation of accretion discs in binary systems: three-dimensional simulations. Mon. Not. R. Astron. Soc. 282, 597–613 (1996)

    Article  ADS  Google Scholar 

  37. Lubow, S. H. & Ogilvie, G. I. On the tilting of protostellar disks by resonant tidal effects. Astrophys. J. 538, 326–340 (2000)

    Article  ADS  Google Scholar 

  38. Dullemond, C. P. RADMC-3D: A multi-purpose radiative transfer tool. Astrophysics Source Code Library 1202. 015, http://asterisk.apod.com/viewtopic.php?f = 35&t = 27484 (2012)

  39. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013)

    Article  ADS  Google Scholar 

  40. Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010)

    Article  MathSciNet  Google Scholar 

  41. Heintz, W. D. Double Stars 32 (Reidel, 1978)

    Book  Google Scholar 

  42. Piétu, V., Dutrey, A. & Guilloteau, S. Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15, and MWC 480. Astron. Astrophys. 467, 163–178 (2007)

    Article  ADS  Google Scholar 

  43. Bally, J., Walawender, J. & Reipurth, B. Deep imaging surveys of star-forming clouds. V. New Herbig-Haro shocks and giant outflows in Taurus. Astron. J. 144, 143 (2012)

    Article  ADS  Google Scholar 

  44. Simon, M., Dutrey, A. & Guilloteau, S. Dynamical masses of T Tauri stars and calibration of pre-main-sequence evolution. Astrophys. J. 545, 1034–1043 (2000)

    Article  CAS  ADS  Google Scholar 

  45. Rosenfeld, K. A., Andrews, S. M., Wilner, D. J. & Stempels, H. C. A. Disk-based dynamical mass estimate for the young binary V4046 Sgr. Astrophys. J. 759, 119 (2012)

    Article  ADS  Google Scholar 

  46. Rosenfeld, K. A., Andrews, S. M., Hughes, A. M., Wilner, D. J. & Qi, C. A spatially resolved vertical temperature gradient in the HD 163296 disk. Astrophys. J. 774, 16 (2013)

    Article  CAS  ADS  Google Scholar 

  47. de Gregorio-Monsalvo, I. et al. Unveiling the gas-and-dust disk structure in HD 163296 using ALMA observations. Astron. Astrophys. 557, A133 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Schnee for help in reducing the ALMA data, S. Myers and R. Indebetouw for assistance with ALMA data analysis, L. Prato for sharing data in advance of publication, and M. Hughes, D. Cohen, S. Gaudi, L. Steuerle Schofield and K. Stassun for discussions. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00150.S. ALMA is a partnership of the ESO (representing its member states), the NSF (USA) and the NINS (Japan), together with the NRC (Canada) and the NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by the ESO, the AUI/NRAO and the NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Author information

Authors and Affiliations

Authors

Contributions

E.L.N.J. developed the disk modelling code, ran the models and wrote most of the paper. R.A. initiated the project, reduced the data, wrote the text on the observations and commented on the manuscript.

Corresponding author

Correspondence to Eric L. N. Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, E., Akeson, R. Misaligned protoplanetary disks in a young binary star system. Nature 511, 567–569 (2014). https://doi.org/10.1038/nature13521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13521

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing