Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An optoelectronic framework enabled by low-dimensional phase-change films


The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states—amorphous and crystalline—in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young’s modulus1,2,3,4,5. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies6,7. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories4,5. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent ‘smart’ glasses, ‘smart’ contact lenses and artificial retina devices.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Colour tunability using ultrathin PCM films.
Figure 2: Reflective display films.
Figure 3: Semi-transparent display type films.
Figure 4: Flexible display films in both reflective and semi-transparent mode.
Figure 5: Demonstration of a single pixel.


  1. Wuttig, M. Phase-change materials—towards a universal memory? Nature Mater. 4, 265–266 (2005)

    ADS  CAS  Article  Google Scholar 

  2. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005)

    ADS  CAS  Article  Google Scholar 

  3. Chen,& Y. C et al. Ultra-thin phase-change bridge memory device using GeSb. 2006 International Electron Devices Meeting (IEDM 2006) (2006)

  4. Raoux, S. et al. Phase-change random access memory: a scalable technology. IBM J. Res. Develop. 52, 465–479 (2008)

    CAS  Article  Google Scholar 

  5. Caldwell, M. A., Jeyasingh, R. G. D., Wong, H. S. P. & Milliron, D. J. Nanoscale phase change memory materials. Nanoscale 4, 4382–4392 (2012)

    ADS  CAS  Article  Google Scholar 

  6. Ohno, E., Yamada, N., Kurumizawa, T., Kimura, K. & Takao, M. Tegesnau alloys for phase-change type optical disk memories. Jpn. J. Appl. Phys. 28, 1235–1240 (1989)

    ADS  CAS  Article  Google Scholar 

  7. Afonso, C. N., Solis, J., Catalina, F. & Kalpouzos, C. Ultrafast reversible phase-change in GeSb films for erasable optical storage. Appl. Phys. Lett. 60, 3123–3125 (1992)

    ADS  CAS  Article  Google Scholar 

  8. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007)

    ADS  CAS  Article  Google Scholar 

  9. Kats, M. A., Blanchard, R., Genevet, P. & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Mater. 12, 20–24 (2013)

    ADS  CAS  Article  Google Scholar 

  10. Oosthoek, J. L. M. et al. Evolution of cell resistance, threshold voltage and crystallization temperature during cycling of line-cell phase-change random access memory. J. Appl. Phys. 110, 024505 (2011)

    ADS  Article  Google Scholar 

  11. Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012)

    ADS  CAS  Article  Google Scholar 

  12. Wang, W. J. et al. Engineering grains of Ge2Sb2Te5 for realizing fast-speed, low-power, and low-drift phase-change memories with further multilevel capabilities. 2012 International Electron Devices Meeting (IEDM 2012) (2012)

  13. Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011)

    ADS  CAS  Article  Google Scholar 

  14. Lee, S. H., Jung, Y. & Agarwal, R. Highly scalable non-volatile and ultra-lowpower phase-change nanowire memory. Nature Nanotechnol. 2, 626–630 (2007)

    ADS  CAS  Article  Google Scholar 

  15. Yamada, N. & Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020–7028 (2000)

    ADS  CAS  Article  Google Scholar 

  16. Collings, N., Davey, T., Christmas, J., Chu, D. P. & Crossland, B. The applications and technology of phase-only liquid crystal on silicon devices. J. Displ. Technol. 7, 112–119 (2011)

    ADS  CAS  Article  Google Scholar 

  17. Burkhard, G. F., Hoke, E. T. & McGehee, M. D. Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv. Mater. 22, 3293–3297 (2010)

    CAS  Article  Google Scholar 

  18. Bichet, O., Wright, C. D., Samson, Y. & Gidon, S. Local characterization and transformation of phase-change media by scanning thermal probes. J. Appl. Phys. 95, 2360–2364 (2004)

    ADS  CAS  Article  Google Scholar 

  19. Satoh, H., Sugawara, K. & Tanaka, K. Nanoscale phase changes in crystalline Ge2Sb2Te5 films using scanning probe microscopes. J. Appl. Phys. 99, 024306 (2006)

    ADS  Article  Google Scholar 

  20. Hamann, H. F., O'Boyle, M., Martin, Y. C., Rooks, M. & Wickramasinghe, K. Ultra-high-density phase-change storage and memory. Nature Mater. 5, 383–387 (2006)

    ADS  CAS  Article  Google Scholar 

  21. Bhaskaran, H., Sebastian, A., Pauza, A., Pozidis, H. & Despont, M. Nanoscale phase transformation in Ge2Sb2Te5 using encapsulated scanning probes and retraction force microscopy. Rev. Sci. Instrum. 80, 083701 (2009)

    ADS  Article  Google Scholar 

  22. Lingley, A. R. et al. A single-pixel wireless contact lens display. J. Micromech. Microeng. 21, 125014 (2011)

    ADS  Article  Google Scholar 

  23. Llordés, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013)

    ADS  Article  Google Scholar 

  24. Zrenner, E. Fighting blindness with microelectronics. Sci. Transl. Med. 5, 210ps216 (2013)

    Article  Google Scholar 

  25. Nam, S. W. et al. Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires. Science 336, 1561–1566 (2012)

    ADS  CAS  Article  Google Scholar 

  26. Redaelli, A., Pirovano, A., Benvenuti, A. & Lacaita, A. L. Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103, 111101 (2008)

    ADS  Article  Google Scholar 

  27. Bez, R., Cappelletti, P., Servalli, G. & Pirovano, A. Phase change memories have taken the field. 5th IEEE International Memory Workshop 13–16, (2013)

  28. Heikenfeld, J., Drzaic, P., Yeo, J. S. & Koch, T. A critical review of the present and future prospects for electronic paper. J. Soc. Inf. Displ. 19, 129–156 (2011)

    Article  Google Scholar 

  29. Heavens, O. Optical Properties of Thin Solid Films Ch. 4, 46–95 (Dover, 1991)

    Google Scholar 

  30. Pettersson, L. A. A., Roman, L. S. & Inganas, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999)

    ADS  CAS  Article  Google Scholar 

Download references


We thank R. Taylor for scientific discussions related to optical spectroscopy measurements. We are grateful to M. Riede for discussions on the modelling aspects of our study. This research was supported by EPSRC via grant numbers EP/J018783/1, EP/J018694/1 and EP/J00541X/2 as well as the OUP John Fell Fund.

Author information

Authors and Affiliations



All authors contributed substantially to this work. P.H. and H.B. conceived and designed the experiments. P.H. performed the experiments with input from H. B and C.D.W. All authors analysed the data. The manuscript was written by P.H. and H.B. with input from C.D.W.

Corresponding author

Correspondence to Harish Bhaskaran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-8, Supplementary Figures 1-6 and additional references. (PDF 3509 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseini, P., Wright, C. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing