Abstract
Lysosomal storage diseases are inborn errors of metabolism, the hallmark of which is the accumulation, or storage, of macromolecules in the late endocytic system. They are monogenic disorders that occur at a collective frequency of 1 in 5,000 live births and are caused by inherited defects in genes that mainly encode lysosomal proteins, most commonly lysosomal enzymes. A subgroup of these diseases involves the lysosomal storage of glycosphingolipids. Through our understanding of the genetics, biochemistry and, more recently, cellular aspects of sphingolipid storage disorders, we have gained insights into fundamental aspects of cell biology that would otherwise have remained opaque. In addition, study of these disorders has led to significant progress in the development of therapies, several of which are now in routine clinical use. Emerging mechanistic links with more common diseases suggest we need to rethink our current concept of disease boundaries.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Sandhoff, K. & Kolter, T. Biosynthesis and degradation of mammalian glycosphingolipids. Phil. Trans. R. Soc. Lond. B 358, 847–861 (2003).
Vitner, E. B., Platt, F. M. & Futerman, A. H. Common and uncommon pathogenic cascades in lysosomal storage diseases. J. Biol. Chem. 285, 20423–20427 (2010).
Schnaar, R. L., Suzuki, A. & Stanley, P. in Essentials of Glycobiology (eds Varki, A. et al.) (Cold Spring Harbour Laboratory Press, 2009).
Schnaar, R. L. in Neuroglycobiology (eds Fukuda, M., Rutishauser, U., Schnaar, R.L., & Yamaguchi, Y.) 95–113 (Oxford University Press, 2005).
Park, J. W., Park, W. J. & Futerman, A. H. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671–681 (2013).
Yamashita, T. et al. A vital role for glycosphingolipid synthesis during development and differentiation. Proc. Natl Acad. Sci. USA 96, 9142–9147 (1999).
Proia, R. L. Glycosphingolipid functions: insights from engineered mouse models. Phil. Trans. R. Soc. Lond. B 358, 879–883 (2003).
Simpson, M. A. et al. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nature Genet. 36, 1225–1229 (2004). This study was the first to provide a genetically and biochemically proven example of a human GSL biosynthetic disease.
Harlalka, G. V. et al. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain 136, 3618–3624 (2013).
Boukhris, A. et al. Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am. J. Hum. Genet. 93, 118–123 (2013). References 9 and 10 both report the second genetically proven example of a human GSL biosynthetic disease.
Proia, R. L. Gangliosides help stabilize the brain. Nature Genet. 36, 1147–1148 (2004).
Schultz, M. L., Tecedor, L., Chang, M. & Davidson, B. L. Clarifying lysosomal storage diseases. Trends Neurosci. 34, 401–410 (2011).
Wraith, J. E. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 50–77 (Oxford University Press, 2004).
Rapola, J. Lysosomal storage diseases in adults. Pathol. Res. Pract. 190, 759–766 (1994).
Sedel, F. Niemann-Pick diseases in adults. Rev. Med. Interne 28 (suppl. 4), S292–S293 (2007).
van der Beek, N. A. et al. Clinical features and predictors for disease natural progression in adults with Pompe disease: a nationwide prospective observational study. Orphanet J. Rare Dis. 7, 88 (2012).
Hopwood, J. J., Crawley, A. C. & Taylor, R. M. in Lysosomal disorders of the brain Vol. 1 (eds Platt, F. M. & Walkley, S. U.) 257–289 (Oxford University Press, 2004).
Hemsley, K. M. & Hopwood, J. J. Lessons learnt from animal models: pathophysiology of neuropathic lysosomal storage disorders. J. Inherit. Metab. Dis. 33, 363–371 (2010).
Zeng, B. J. et al. Spontaneous appearance of Tay-Sachs disease in an animal model. Mol. Genet. Metab. 95, 59–65 (2008).
Zervas, M., Somers, K. L., Thrall, M. A. & Walkley, S. U. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr. Biol. 11, 1283–1287 (2001). The study reports the first animal model evidence that miglustat might be a disease-modifying treatment for NPC disease.
Patterson, M. C., Vecchio, D., Prady, H., Abel, L. & Wraith, J. E. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 6, 765–772 (2007). This investigation confirmed that miglustat is a disease-modifying treatment for patients with NPC disease.
Ioannou, Y. A., Zeidner, K. M., Gordon, R. E. & Desnick, R. J. Fabry disease: preclinical studies demonstrate the effectiveness of alpha-galactosidase A replacement in enzyme-deficient mice. Am. J. Hum. Genet. 68, 14–25 (2001).
Brady, R. O., Murray, G. J., Moore, D. F. & Schiffmann, R. Enzyme replacement therapy in Fabry disease. J. Inherit. Metab. Dis. 24, 18–24, discussion 11–12 (2001).
Laurijssens, B., Aujard, F. & Rahman, A. Animal models of Alzheimer's disease and drug development. Drug Discov. Today. Technol. 10, e319–e327 (2013).
Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).
Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Rev. Mol. Cell Biol. 10, 623–635 (2009).
Rosenbaum, A. I. & Maxfield, F. R. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J. Neurochem. 116, 789–795 (2011).
Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Med. 14, 1247–1255 (2008).
Lloyd-Evans, E. & Platt, F. M. Lipids on trial: the search for the offending metabolite in Niemann-Pick type C disease. Traffic 11, 419–428 (2010).
Patterson, M. C. et al. Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol. Genet. Metab. 106, 330–344 (2012).
Tomanin, R. et al. Gene therapy approaches for lysosomal storage disorders, a good model for the treatment of mendelian diseases. Acta Paediatr. 101, 692–701 (2012).
Cachón-González, M. B. et al. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc. Natl Acad. Sci. USA 103, 10373–10378 (2006).
Ellinwood, N. M. et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol. Ther. 19, 251–259 (2011).
Ziegler, R. J. et al. Correction of the nonlinear dose response improves the viability of adenoviral vectors for gene therapy of fabry disease. Hum. Gene Ther. 13, 935–945 (2002).
Yew, N. S. & Cheng, S. H. Gene therapy for lysosomal storage disorders. Pediatr. Endocrinol. Rev. 11 (suppl. 1), 99–109 (2013).
Bradbury, A. M. et al. Therapeutic response in feline Sandhoff disease despite immunity to intracranial gene therapy. Mol. Ther. 21, 1306–1315 (2013).
Coutelle, C. & Waddington, S. N. The concept of prenatal gene therapy. Methods Mol. Biol. 891, 1–7 (2012).
Mattar, C. N. et al. The case for intrauterine gene therapy. Best Pract. Res. Clin. Obstet. Gynaecol. 26, 697–709 (2012).
Rahim, A. A. et al. Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB J. 25, 3505–3518 (2011).
Foust, K. D. et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nature Biotechnol. 28, 271–274 (2010).
Nagabhushan Kalburgi, S., Khan, N. N. & Gray, S. J. Recent gene therapy advancements for neurological diseases. Discov. Med. 15, 111–119 (2013).
Brady, R. O. Enzyme replacement for lysosomal diseases. Annu. Rev. Med. 57, 283–296 (2006). This review describes the pioneering development of the first ERTs for LSDs.
Jmoudiak, M. & Futerman, A. H. Gaucher disease: pathological mechanisms and modern management. Br. J. Haematol. 129, 178–188 (2005).
Cox, T. M. & Schofield, J. P. Gaucher's disease: clinical features and natural history. Baillieres Clin. Haematol. 10, 657–689 (1997).
Brady, R. O. Enzyme replacement therapy: conception, chaos and culmination. Phil. Trans. R. Soc. Lond. B 358, 915–919 (2003).
Cox, T. M. Competing for the treasure in exceptions. Am. J. Hematol. 88, 163–165 (2013).
Rombach, S. M., Hollak, C. E., Linthorst, G. E. & Dijkgraaf, M. G. Cost-effectiveness of enzyme replacement therapy for Fabry disease. Orphanet J. Rare Dis. 8, 29 (2013).
Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463, 549–553 (2010).
Petersen, N. H. & Kirkegaard, T. HSP70 and lysosomal storage disorders: novel therapeutic opportunities. Biochem. Soc. Trans. 38, 1479–1483 (2010).
Platt, F. M. & Jeyakumar, M. Substrate reduction therapy. Acta Paediatr. Suppl. 97, 88–93 (2008).
Platt, F. M., Neises, G. R., Dwek, R. A. & Butters, T. D. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269, 8362–8365 (1994).
Cox, T. et al. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355, 1481–1485 (2000).
Lachmann, R. H. Miglustat: substrate reduction therapy for glycosphingolipid lysosomal storage disorders. Drugs Today (Barc.) 42, 29–38 (2006).
Lyseng-Williamson, K. A. Miglustat: a review of its use in Niemann-Pick disease type C. Drugs 74, 61–74 (2014).
Chien, Y. H. et al. Long-term efficacy of miglustat in paediatric patients with Niemann-Pick disease type C. J. Inherit. Metab. Dis. 36, 129–137 (2012).
Walterfang, M. et al. Dysphagia as a risk factor for mortality in Niemann-Pick disease type C: systematic literature review and evidence from studies with miglustat. Orphanet J. Rare Dis. 7, 76 (2012).
Ioannou, Y. A. The structure and function of the Niemann-Pick C1 protein. Mol. Genet. Metab. 71, 175–181 (2000).
Neufeld, E. F. From serendipity to therapy. Annu. Rev. Biochem. 80, 1–15 (2011). This is a review of the pioneering discovery of cross-correction by lysosomal enzymes that formed the basis for ERT.
Ruderman, E. M. The role of concomitant methotrexate in biologic therapy for rheumatoid arthritis. Bull. Hosp. Jt. Dis. 71 (suppl. 1), S29–S32 (2013).
Smith, D., Wallom, K. L., Williams, I. M., Jeyakumar, M. & Platt, F. M. Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol. Dis. 36, 242–251 (2009).
Jeyakumar, M. et al. NSAIDs increase survival in the Sandhoff disease mouse: Synergy with N-butyldeoxynojirimycin. Ann. Neurol. 56, 642–649 (2004).
Jeyakumar, M. et al. Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 97, 327–329 (2001).
Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852–3866 (2011).
Sardiello, M. & Ballabio, A. Lysosomal enhancement: a CLEAR answer to cellular degradative needs. Cell Cycle 8, 4021–4022 (2009).
Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009). This article reports the discovery of the key role that the transcription factor TFEB has in regulating lysosome biogenesis.
Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16–28 (2013).
Füllgrabe, J., Klionsky, D. J. & Joseph, B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nature Rev. Mol. Cell Biol. 15, 65–74 (2014).
Reddy, A., Caler, E. V. & Andrews, N. W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001). The authors of this paper made the discovery of an unanticipated role of lysosomes in plasma-membrane repair.
Jaiswal, J. K., Andrews, N. W. & Simon, S. M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159, 625–635 (2002).
Medina, D. L. et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21, 421–430 (2011).
Liu, B. et al. Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. J. Lipid Res. 51, 933–944 (2010).
Ramirez, C. M. et al. Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann-Pick type C1 mouse and markedly prolongs life. Pediatr. Res. 68, 309–315 (2010).
Davidson, C. D. et al. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS ONE 4, e6951 (2009).
Stein, V. M. et al. Miglustat improves purkinje cell survival and alters microglial phenotype in feline Niemann-Pick disease type C. J. Neuropathol. Exp. Neurol. 71, 434–448 (2012).
Chen, F. W., Li, C. & Ioannou, Y. A. Cyclodextrin induces calcium-dependent lysosomal exocytosis. PLoS ONE 5, e15054 (2010).
Pontikis, C. C., Davidson, C. D., Walkley, S. U., Platt, F. M. & Begley, D. J. Cyclodextrin alleviates neuronal storage of cholesterol in Niemann-Pick C disease without evidence of detectable blood-brain barrier permeability. J. Inherit. Metab. Dis. 36, 491–498 (2013).
te Vruchte, D. et al. Relative acidic compartment volume as a lysosomal storage disorder-associated biomarker. J. Clin. Invest. http://dx.doi.org/10.1172/JCI72835 (2014).
Sano, R. et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol. Cell 36, 500–511 (2009).
Wu, Y. P. & Proia, R. L. Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proc. Natl Acad. Sci. USA 101, 8425–8430 (2004).
Vitner, E. B. et al. RIPK3 as a potential therapeutic target for Gaucher's disease. Nature Med. 20, 204–208 (2014). This article reports the discovery of the involvement of the necroptotic cell-death pathway in Gaucher and Krabbe disease.
Wenger, D. A., Rafi, M. A. & Luzi, P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum. Mutat. 10, 268–279 (1997).
Jesionek-Kupnicka, D. et al. Krabbe disease: an ultrastructural study of globoid cells and reactive astrocytes at the brain and optic nerves. Folia Neuropathol. 35, 155–162 (1997).
Ghavami, S. et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 112, 24–49 (2014).
Linkermann, A. & Green, D. R. Necroptosis. N. Engl. J. Med. 370, 455–465 (2014).
Christofferson, D. E. & Yuan, J. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22, 263–268 (2010).
Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000).
Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).
Davies, J. P., Chen, F. W. & Ioannou, Y. A. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290, 2295–2298 (2000).
Ioannou, Y. A. Multidrug permeases and subcellular cholesterol transport. Nature Rev. Mol. Cell Biol. 2, 657–668 (2001).
Liscum, L. Niemann-Pick type C mutations cause lipid traffic jam. Traffic 1, 218–225 (2000).
Futerman, A. H. Calcium homeostasis in lysosomal storage diseases. Int. J. Clin. Pharmacol. Ther. 48, S6–S7 (2010).
Neefjes, J. & van der Kant, R. Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci. 37, 66–76 (2014).
Nixon, R. A. The role of autophagy in neurodegenerative disease. Nature Med. 19, 983–987 (2013).
Wraith, J. E. Lysosomal disorders. Semin. Neonatol. 7, 75–83 (2002).
Sidransky, E. Gaucher disease: insights from a rare Mendelian disorder. Discov. Med. 14, 273–281 (2012).
Grewal, R. P. et al. Neurologic complications of nonneuronopathic Gaucher's disease. Arch. Neurol. 48, 1271–1272 (1991).
Neudorfer, O. et al. Occurrence of Parkinson's syndrome in type I Gaucher disease. QJM 89, 691–694 (1996). The authors of this article were the first to link Gaucher disease and Parkinson's disease.
Machaczka, M., Rucinska, M., Skotnicki, A. B. & Jurczak, W. Parkinson's syndrome preceding clinical manifestation of Gaucher's disease. Am. J. Hematol. 61, 216–217 (1999).
Tayebi, N. et al. Gaucher disease and parkinsonism: a phenotypic and genotypic characterization. Mol. Genet. Metab. 73, 313–321 (2001).
Bembi, B. et al. Gaucher's disease with Parkinson's disease: clinical and pathological aspects. Neurology 61, 99–101 (2003).
Hruska, K. S., Goker-Alpan, O. & Sidransky, E. Gaucher disease and the synucleinopathies. J. Biomed. Biotechnol. 2006, 78549 (2006).
Várkonyi, J. et al. Gaucher disease associated with parkinsonism: four further case reports. Am. J. Med. Genet. A. 116A, 348–351 (2003).
Tayebi, N. et al. Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol. Genet. Metab. 79, 104–109 (2003).
Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009). This article confirmed a genetic link between GBA mutations and Parkinson's disease.
Goker-Alpan, O. et al. Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 67, 908–910 (2006).
Shachar, T. et al. Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond. Mov. Disord. 26, 1593–1604 (2011).
Dehay, B. et al. Lysosomal impairment in Parkinson's disease. Mov. Disord. 28, 725–732 (2013).
Beutler, E. Gaucher disease: multiple lessons from a single gene disorder. Acta. Paediatr. Suppl. 95, 103–109 (2006).
de Fost, M., Aerts, J. M. & Hollak, C. E. Gaucher disease: from fundamental research to effective therapeutic interventions. Neth. J. Med. 61, 3–8 (2003).
Pastores, G. M. & Lien, Y. H. Biochemical and molecular genetic basis of Fabry disease. J. Am. Soc. Nephrol. 13 (suppl. 2), S130–S133 (2002).
Bersano, A. et al. Neurological features of Fabry disease: clinical, pathophysiological aspects and therapy. Acta Neurol. Scand. 126, 77–97 (2012).
Brady, R. O. Tay-Sachs disease: the search for the enzymatic defect. Adv. Genet. 44, 51–60 (2001).
Mahuran, D. J., Triggs-Raine, B. L., Feigenbaum, A. J. & Gravel, R. A. The molecular basis of Tay-Sachs disease: mutation identification and diagnosis. Clin. Biochem. 23, 409–415 (1990).
Shapiro, B. E., Logigian, E. L., Kolodny, E. H. & Pastores, G. M. Late-onset Tay-Sachs disease: the spectrum of peripheral neuropathy in 30 affected patients. MuscleNerve 38, 1012–1015 (2008).
Gravel, R. A. et al. in The Metabolic and Molecular Bases of Inherited Disease Vol. 3 (eds Scriver, C. R., Beadet, A. L., Valle, D. & Sly, W. S.) 3827–3876 (McGraw Hill, 2001).
Hadfield, M. G., Mamunes, P. & David, R. B. The pathology of Sandhoff's disease. J. Pathol. 123, 137–144 (1977).
Suzuki, Y., Sakuraba, H. & Oshima, M. in The Metabolic and Molecular Bases of Inherited Diseases Vol. 2 (eds Scriver, C. R., Beadet, A. L., Sly, W. S. & Valle, D.) 2785–2824 (McGraw Hill, 1995).
Suzuki, Y., Oshima, A. & Nanba, E. in The Metabolic and Molecular Bases of Inherited Disease Vol. 3 (eds Scriver, C. R., Beadet, A. L., Valle, D. & Sly, W. S.) 3775–3809 (McGraw Hill, 2001).
Yoshida, K., Ikeda, S., Kawaguchi, K. & Yanagisawa, N. Adult GM1 gangliosidosis: immunohistochemical and ultrastructural findings in an autopsy case. Neurology 44, 2376–2382 (1994).
Vanier, M. T. Niemann-Pick disease type C. Orphanet. J. Rare Dis. 5, 16 (2010).
Mengel, E. et al. Niemann-Pick disease type C symptomatology: an expert-based clinical description. Orphanet J. Rare Dis. 8, 166 (2013).
Acknowledgements
Thanks to D. Priestman for creating Fig. 1 and to N. Platt for his comments on the manuscript. F.M.P is a Royal Society Wolfson Research Merit Award holder.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
F.M.P. is a consultant for Actelion and Orphazyme.
Additional information
Reprints and permissions information is available at www.nature.com/reprints.
Rights and permissions
About this article
Cite this article
Platt, F. Sphingolipid lysosomal storage disorders. Nature 510, 68–75 (2014). https://doi.org/10.1038/nature13476
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature13476
This article is cited by
-
Pitfalls in methods to study colocalization of nanoparticles in mouse macrophage lysosomes
Journal of Nanobiotechnology (2022)
-
Glucosylceramide synthase inhibition protects against cardiac hypertrophy in chronic kidney disease
Scientific Reports (2022)
-
Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria
Nature Communications (2022)
-
CLN3 is required for the clearance of glycerophosphodiesters from lysosomes
Nature (2022)
-
Segregated cation flux by TPC2 biases Ca2+ signaling through lysosomes
Nature Communications (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.