Abstract
Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere1—probably linked to changes in deep ocean circulation2—occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling–Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events3, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling–Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling–Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean’s usual thermal stratification pre-dates the Bølling–Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the Bølling–Allerød interstadial.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Dynamic and thermodynamic influences on precipitation in Northeast Mexico on orbital to millennial timescales
Nature Communications Open Access 20 April 2023
-
Late quaternary biotic homogenization of North American mammalian faunas
Nature Communications Open Access 08 July 2022
-
The response of the hydrological cycle to temperature changes in recent and distant climatic history
Progress in Earth and Planetary Science Open Access 31 May 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Petit, J.-R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)
McManus, J., Francois, R., Gherardi, J., Keigwin, L. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004)
Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl Acad. Sci. USA 109, E1134–E1142 (2012)
Broecker, W. S. & van Donk, J. Insolation changes, ice volumes, and the O18 record in deep-sea cores. Rev. Geophys. 8, 169–198 (1970)
Denton, G. H., Alley, R. B., Comer, G. C. & Broecker, W. S. The role of seasonality in abrupt climate change. Quat. Sci. Rev. 24, 1159–1182 (2005)
Weaver, A. J., Saenko, O. A., Clark, P. U. & Mitrovica, J. X. Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 299, 1709–1713 (2003)
Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310–314 (2009)
Rogerson, M. et al. Enhanced Mediterranean-Atlantic exchange during Atlantic freshening phases. Geochem. Geophys. Geosyst. 11, Q08013 (2010)
Knorr, G. & Lohmann, G. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424, 532–536 (2003)
Adkins, J. F., Cheng, H., Boyle, E. A., Druffel, E. R. M. & Edwards, L. Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280, 725–728 (1998)
Robinson, L. F. et al. Radiocarbon variability in the western North Atlantic during the last deglaciation. Science 310, 1469–1473 (2005)
Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 1321–1324 (2000)
Thiagarajan, N., Adkins, J. & Eiler, J. Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochim. Cosmochim. Acta 75, 4416–4425 (2011)
Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and d18O of the glacial deep ocean. Science 298, 1769–1773 (2002)
Dokken, T. & Jansen, E. Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401, 458–461 (1999)
Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. 108, 13415–13419 (2011)
Rasmussen, T. L., Thomsen, E., Labeyrie, L. & van Weering, T. C. E. Circulation changes in the Faeroe-Shetland Channel correlating with cold events during the last glacial period (58–10 ka). Geology 24, 937–940 (1996)
Shaffer, G., Olsen, S. M. & Bjerrum, C. J. Ocean subsurface warming as a mechanism for coupling Dansgaard-Oeschger climate cycles and ice-rafting events. Geophys. Res. Lett. 31, L24202 (2004)
Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat-flow with lithospheric age. Nature 359, 123–129 (1992)
Kwon, E. Y. et al. North Atlantic ventilation of “southern-sourced” deep water in the glacial ocean. Paleoceanography 27, PA2208 (2012)
Gherardi, J.-M. et al. Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional overturning circulation through the last deglaciation. Earth Planet. Sci. Lett. 240, 710–723 (2005)
Gherardi, J. et al. Glacial–interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanography 24, PA2204 (2009)
Adkins, J. F., Ingersoll, A. P. & Pasquero, C. Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quat. Sci. Rev. 24, 581–594 (2005)
McDougall, T. Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res. 92, 5448–5464 (1987)
Denbo, D. W. & Skyllingstad, E. D. An ocean large-eddy simulation model with application to deep convection in the Greenland Sea. J. Geophys. Res. 101, 1095–1110 (1996)
Akitomo, K. Open-ocean deep convection due to thermobaricity 1. Scaling argument. J. Geophys. Res. 104, 5225–5234 (1999)
Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001)
Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995)
Adkins, J. F. et al. Radiocarbon dating of deep-sea corals. Radiocarbon 44, 567–580 (2002)
Southon, J., Noronha, A. L., Cheng, H., Edwards, R. L. & Wang, Y. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82. Quat. Sci. Rev. 33, 32–41 (2012)
Thiagarajan, N. et al. Movement of deep-sea coral populations on climatic timescales. Paleoceanography 28, 227–236 (2013)
Robinson, L. F. et al. Deep-sea scleractinian coral age and depth distributions in the northwest Atlantic for the last 225,000 years. Bull. Mar. Sci. 81, 371–391 (2007)
Cheng, H., Adkins, J. F., Edwards, R. L. & Boyle, E. A. U-Th dating of deep-sea corals. Geochim. Cosmochim. Acta 64, 2401–2416 (2000)
Reimer, P. J. et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51, 1111–1150 (2009)
Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H. & Eiler, J. M. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Natl Acad. Sci. 107, 11245–11249 (2010)
Huntington, K. W. et al. Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J. Mass Spectrom. 44, 1318–1329 (2009)
Ghosh, P. et al. 13C-18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta 70, 1439–1456 (2006)
Thiagarajan, N., Guo, W. F., Adkins, J. & Eiler, J. Clumped isotope calibration of modern deep sea corals and implications for vital effects. Geochim. Cosmochim. Acta 75. 4416–4425 (2009)
Curry, W. B. & Oppo, D. Glacial water mass geometry and the distribution of δ13C of total CO2 in the Western Atlantic Ocean. Paleoceanography 20, PA1017 (2005)
Waelbroeck, C. et al. The timing of deglacial circulation changes in the Atlantic. Paleoceanography 26, PA3213 (2011)
Oppo, D. W. & Curry, W. B. Deep Atlantic circulation during the Last Glacial Maximum and deglaciation. Nature Edu. Knowl. 3, 1 (2012)
Marchal, O. & Curry, W. B. On the abyssal circulation in the glacial Atlantic. J. Phys. Oceanogr. 38, 2014–2037 (2008)
Tessin, A. C. & Lund, D. C. Isotopically depleted carbon in the mid-depth South Atlantic during the last deglaciation. Paleoceanography 28, 296–306 (2013)
Kiefer, T. & Kienast, M. Patterns of deglacial warming in the Pacific Ocean: a review with emphasis on the time interval of Heinrich event 1. Quat. Sci. Rev. 24, 1063–1081 (2005)
Dwyer, G. S., Cronin, T. M., Baker, P. A. & Rodriguez-Lazaro, J. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios. Geochem. Geophys. Geosyst. 1, 1028 (2000)
Chiessi, C. M. et al. South Atlantic interocean exchange as the trigger for the Bølling warm event. Geology 36, 919–922 (2008)
Wang, Y. J. et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001)
Adkins, J. F. & Boyle, E. A. Changing atmospheric Delta C-14 and the record of deep water paleoventilation ages. Paleoceanography 12, 337–344 (1997)
Came, R. et al. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature 449, 198–201 (2007)
Tripati, A., Thiagarajan, N. & Eiler, J. ‘Clumped isotope' thermometry in foraminifera. Geochim. Cosmochim. Acta 72, A956 (2008)
Emile-Geay, J. & Madec, G. Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci. 5, 203–217 (2009)
Rühlemann, C., Mulitza, S., Muller, P. J., Wefer, G. & Zahn, R. Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature 402, 511–514 (1999)
Thornalley, D. J. R., Elderfield, H. & McCave, I. N. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years. Paleoceanography 25, PA1211 (2010)
Siani, G. et al. Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum. Science 294, 1917–1920 (2001)
McCulloch, M. et al. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas. Earth Planet. Sci. Lett. 298, 143–152 (2010)
Skinner, L. & Elderfield, H. Rapid fluctuations in the deep North Atlantic heat budget during the last glacial period. Paleoceanography 22, PA1205 (2007)
Skinner, L. & Shackleton, N. J. Rapid transient changes in northeast Atlantic deep water ventilation age across Termination 1. Paleoceanography 19, PA2005 (2004)
Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the Last Deglaciation. Science 335, 557–561 (2012)
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010)
Barker, S., Knorr, G., Vautravers, M. J., Diz, P. & Skinner, L. C. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geosci. 3, 567–571 (2010)
De Pol-Holz, R., Keigwin, L., Southon, J., Hebbeln, D. & Mohtadi, M. No signature of abyssal carbon in intermediate waters off Chile during deglaciation. Nature Geosci 3, 192–195 (2010)
Cléroux, C., deMenocal, P. & Guilderson, T. Deglacial radiocarbon history of tropical Atlantic thermocline waters: absence of CO2 reservoir purging signal. Quat. Sci. Rev. 30, 1875–1882 (2011)
Rickaby, R. E. M. & Elderfield, H. Evidence from the high-latitude North Atlantic for variations in Antarctic Intermediate water flow during the last deglaciation. Geochem. Geophys. Geosyst. 6, Q05001 (2005)
Sachs, J. P., Anderson, R. F. & Lehman, S. J. Glacial surface temperatures of the Southeast Atlantic Ocean. Science 293, 2077–2079 (2001)
Pahnke, K., Goldstein, S. & Hemming, S. Abrupt changes in Antarctic Intermediate Water circulation over the past 25,000 years. Nature Geosci. 1, 870–874 (2008)
Xie, R. C., Marcantonio, F. & Schmidt, M. W. Deglacial variability of Antarctic Intermediate Water penetration into the North Atlantic from authigenic neodymium isotope ratios. Paleoceanography 27, PA3221 (2012)
Came, R. E., Oppo, D. W., Curry, W. B. & Lynch-Stieglitz, J. Deglacial variability in the surface return flow of the Atlantic meridional overturning circulation. Paleoceanography 23, PA1217 (2008)
Saenko, O. A., Weaver, A. J. & Gregory, J. M. On the link between the two modes of the ocean thermohaline circulation and the formation of global-scale water masses. J. Clim. 16, 2797–2801 (2003)
Lund, D. C., Adkins, J. F. & Ferrari, R. Abyssal Atlantic circulation during the Last Glacial Maximum: constraining the ratio between transport and vertical mixing. Paleoceanography 26, PA1213 (2011)
Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539–561 (2013)
Eltgroth, S. F., Adkins, J. F., Robinson, L., Southon, J. & Kashgarian, M. A deep-sea coral record of North Atlantic radiocarbon through the Younger Dryas: Evidence for Intermediate/Deep water reorganization. Paleoceanography 21, PA4207 (2006)
Keigwin, L. D. Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography 19, PA4012 (2004)
Acknowledgements
We thank J. McManus and M. Miller for discussions. We also thank the captain and crew of the RV Atlantis cruise AT7-35 and the WHOI Deep Submergence Alvin and ABE groups.
Author information
Authors and Affiliations
Contributions
N.T. and J.F.A. designed the study. N.T. collected the 14C and Δ47 data and compiled the benthic δ13C sections. J.R.S. facilitated and oversaw the 14C measurements and J.M.E. facilitated and oversaw the Δ47 measurements. A.V.S. collected the U-series data. J.F.A. facilitated and oversaw the U-series measurements. N.T. and J.F.A. wrote the first draft of the manuscript. All authors contributed to the interpretation and preparation of the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 Sample collection sites.
Sites of sample collection in the North Atlantic.
Extended Data Figure 2 Δ47 cleaning study.
Two different modern corals were selected to determine which cleaning method did not bias Δ47 temperatures. A live-when-collected coral with a growth temperature of 3.9 °C (a) and a coral with an Fe–Mn crust and a 14C age matching that of the modern water column from 5 °C waters in the Southern Ocean (b) were selected for the cleaning study. We found that physical cleaning with a Dremel tool gave accurate Δ47–temperature reconstructions. Error bars are 1 s.e.m.
Extended Data Figure 3 Box model and equations.
This schematic describes the box model and equations used to calculate the effect of geothermal heat on ocean temperatures. Cp is the heat capacity of sea water, V is the volume fraction of the northern or southern box, Θ is the temperature, ρ is the density of sea water, q is the overturning rate of the northern or southern box, A is the area of the ocean, kv is the vertical mixing coefficient and Fgh is the geothermal heat flux (0.1 W m−2).
Extended Data Figure 4 Steady-state temperature change with ocean overturning and mixing.
The steady-state solutions for the box model in Extended Data 3. a, If there is a well-flushed southern cell (10 Sv of overturning), the bottom water is only warmed by about 0.8 °C relative to the restoring temperature in the atmosphere. However, for a very slow overturning (1 Sv) this temperature increase can reach over 8 °C, well above the temperature change seen at our site. b, Increasing the difference between the restoring temperature in the south relative to the north can increase the warming by as much as 11 °C (Supplementary Fig. 4b).
Extended Data Figure 5 Transient-state temperature change with ocean overturning and mixing.
The transient-state solution for the box model in Extended Data 3. The vertical diffusivity was kept constant and the Southern Hemisphere restoring temperature at 277 K. We find that there is a rapid warming within the first few thousand years (denoted by the black box).
Extended Data Figure 6 Comparison with other Δ14C records during the deglaciation.
A comparison of the Δ14C of deep-sea corals (previously published work11,71 and current study) and foraminifera72 from the Northwest Atlantic (a) with Δ14C of the tropical Atlantic62 (b), Iceland53 (c), the Mediterranean54,55 (d), the Iberian margin57 (e) and the Southern Ocean58,59,60,61 (f). The three corals from our study showing a warm and Δ14C-depleted signature at 15 kyr ago are circled in red. Although the tropical Atlantic and Mediterranean are both warm, they have too-enriched Δ14C values to explain the warm, Δ14C-depleted water seen at our site at the mid-15-kyr event. Iceland has extremely Δ14C-depleted waters, but these are thought to form during brine formation, which would not generate warm waters. The Iberian margin also has Δ14C values, but it is bathed by cooler waters and does not show the abrupt mid-15-kyr warming (Extended Data 7). At the mid-15-kyr event, UCDW, LCDW, AABW, the corals at our site and the Icelandic records all converge to ∼50‰. We believe it is much more likely that some vertical convection is causing Southern Ocean waters all to have similar Δ14C values, and that some southern-sourced waters are influencing the Δ14C of our site as well as perhaps waters near Iceland (as previously suggested63). Note the different axes on f. (Points in c and d that are above the atmospheric value are connected with a dashed line instead of a solid line.) Uncertainties are 2σ error ellipses except for the Iberian margin and Mediterranean records, which are 1σ.
Extended Data Figure 7 Comparison with Iberian margin Δ14C and temperature.
a, A comparison of the Mg/Ca–temperature and Δ14C record from the Iberian margin57 with the record from our site. The Iberian margin shows a warming at the beginning of the Bølling–Allerød but not an abrupt mid-15-kyr warming. Asterisks indicate corals which have either a high δ234Ui or a Δ14C above the atmospheric value. In both cases, this open-system behaviour changes the Δ14C values but does not change calendar ages much on this plot. b, Δ14C measurements at the Iberian margin also show that the water bathing the Iberian margin is distinct from the warm and Δ14C-depleted water at our site. Error bars are 1 s.e.m.
Extended Data Figure 8 Compilation of Atlantic benthic δ13C records.
a, Benthic sections of δ13C from well-dated, high-resolution cores39,40,41,42,43,53 in the North Atlantic as well as from the GEOSECS database. Black dots indicate the latitudes and depths of cores used to make the sections. The time intervals compiled are as follows: Holocene (0–10 kyr ago; a), Younger Dryas (11.7–13 kyr ago; b), Bølling–Allerød (13–14.5 kyr ago; c), late HS1 (14.5–15.7 kyr ago; d), early HS1 (15.7–18 kyr ago; e), Last Glacial Maximum (19–22 kyr ago; f). At the LGM (f), cold, salty and δ13C-depleted water from the south lay below cold, fresher and δ13C-enriched water. During HS1 (d, e), intermediate waters changed more than deeper waters. By the Bølling–Allerød (c), the δ13C distribution seen today had been established. The Younger Dryas (b), while thought to be a return to Heinrich-like water masses, is structured differently than the late-HS1 section and was a progression towards the Holocene water column configuration (a).
Supplementary information
Supplementary Data
This file comprises 2 sheets: The first has the raw data for samples and standards run during all sessions; the second has the pertinent information for the heated gases run during each session and was used for sample correction. (XLSX 57 kb)
Rights and permissions
About this article
Cite this article
Thiagarajan, N., Subhas, A., Southon, J. et al. Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature 511, 75–78 (2014). https://doi.org/10.1038/nature13472
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature13472
This article is cited by
-
Dynamic and thermodynamic influences on precipitation in Northeast Mexico on orbital to millennial timescales
Nature Communications (2023)
-
Late Pleistocene Glacial-Paleosol-cosmic record of the Viso Massif—France and Italy: New evidence in support of the Younger Dryas boundary (12.8 ka)
International Journal of Earth Sciences (2023)
-
The response of the hydrological cycle to temperature changes in recent and distant climatic history
Progress in Earth and Planetary Science (2022)
-
Late quaternary biotic homogenization of North American mammalian faunas
Nature Communications (2022)
-
Deep-water circulation changes lead North Atlantic climate during deglaciation
Nature Communications (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.