Letter | Published:

Quasiparticle engineering and entanglement propagation in a quantum many-body system

Nature volume 511, pages 202205 (10 July 2014) | Download Citation

Abstract

The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles1. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system’s interactions2. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions3,4. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts5,6,7,8,9,10,11. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply7,12. Our results will enable experimental studies of a range of quantum phenomena, including transport13,14, thermalization15, localization16 and entanglement growth17, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Quantum criticality: competing ground states in low dimensions. Science 288, 475–480 (2000)

  2. 2.

    & Time-dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006)

  3. 3.

    & Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)

  4. 4.

    , , , & Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008)

  5. 5.

    & The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

  6. 6.

    , & in Quantum Information and Many Body Quantum Systems (eds & ) 51 (Edizioni della Normale, 2008)

  7. 7.

    in Quantum Theory from Small to Large Scales, Lecture Notes of the Les Houches Summer School (eds , , , & ) Vol. 95, Ch. 5 (Oxford Univ. Press, 2010)

  8. 8.

    & Much ado about something: why Lieb-Robinson bounds are useful. IAMP News Bull. 22–29. (October 2010)

  9. 9.

    et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012)

  10. 10.

    et al. Microscopic observation of magnon bound states and their dynamics. Nature 502, 76–79 (2013)

  11. 11.

    , , , & Local emergence of thermal correlations in an isolated quantum many-body system. Nature Phys. 9, 640–643 (2013)

  12. 12.

    & Spread of correlations in long-range interacting quantum systems. Phys. Rev. Lett. 111, 207202 (2013)

  13. 13.

    Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13–30 (2007)

  14. 14.

    , , , & Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009)

  15. 15.

    , , & Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007)

  16. 16.

    et al. Many-body localization with dipoles. Preprint at (2014)

  17. 17.

    , , & Entanglement growth in quench dynamics with variable range interactions. Phys. Rev. X 3, 031015 (2013)

  18. 18.

    Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

  19. 19.

    , & Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006)

  20. 20.

    & General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006)

  21. 21.

    , , , & Lieb- Robinson bounds for spin-boson lattice models and trapped ions. Phys. Rev. Lett. 111, 230404 (2013)

  22. 22.

    , , & Breakdown of quasi-locality in long-range quantum lattice models. Phys. Rev. Lett. 111, 260401 (2013)

  23. 23.

    et al. Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009)

  24. 24.

    et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012)

  25. 25.

    et al. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583–587 (2013)

  26. 26.

    et al. Non-local propagation of correlations in long-range interacting quantum systems. Nature (this issue)

  27. 27.

    & Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008)

  28. 28.

    & Prethermalization and dynamical transition in an isolated trapped ion spin chain. New J. Phys. 15, 113051 (2013)

  29. 29.

    et al. A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013)

  30. 30.

    et al. Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004)

  31. 31.

    & Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940)

  32. 32.

    & Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999)

  33. 33.

    et al. Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor. Phys. Rev. Lett. 90, 143602 (2003)

  34. 34.

    , , & Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

  35. 35.

    Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

  36. 36.

    Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

  37. 37.

    & Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119–130 (2006)

Download references

Acknowledgements

We acknowledge discussions with L. Tagliacozzo, M. Heyl, A. Gorshkov and S. Bose. This work was supported by the Austrian Science Fund (FWF) under grant number P25354-N20, and by the European Commission via the integrated project SIQS and by the Institut für Quanteninformation. We also acknowledge support from the European Research Council through the CRYTERION Project (number 227959).

Author information

Author notes

    • P. Jurcevic
    •  & B. P. Lanyon

    These authors contributed equally to this work.

Affiliations

  1. Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria

    • P. Jurcevic
    • , B. P. Lanyon
    • , P. Hauke
    • , C. Hempel
    • , P. Zoller
    • , R. Blatt
    •  & C. F. Roos
  2. Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

    • P. Jurcevic
    • , B. P. Lanyon
    • , C. Hempel
    • , R. Blatt
    •  & C. F. Roos
  3. Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

    • P. Hauke
    •  & P. Zoller

Authors

  1. Search for P. Jurcevic in:

  2. Search for B. P. Lanyon in:

  3. Search for P. Hauke in:

  4. Search for C. Hempel in:

  5. Search for P. Zoller in:

  6. Search for R. Blatt in:

  7. Search for C. F. Roos in:

Contributions

P.H., B.P.L. and C.F.R. developed the research, based on theoretical ideas conceived with P.Z.; P.J., B.P.L., C. H. and C.F.R. performed the experiments; B.P.L., P.J., C.F.R. and P.H. analysed the data and carried out numerical simulations. P.J., C.H., B.P.L., R.B. and C.F.R. contributed to the experiment; B.P.L., C.F.R., P.H., P.Z. and R.B. wrote the manuscript; all authors contributed to discussions of the results and of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to C. F. Roos.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13461

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.