Abstract
Accreting supermassive black holes at the centres of active galaxies often produce ‘jets’—collimated bipolar outflows of relativistic particles1. Magnetic fields probably play a critical role in jet formation2,3 and in accretion disk physics4. A dynamically important magnetic field was recently found near the Galactic Centre black hole5. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models3,6,7. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow3 and determine the directionality of jets8.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The nature of compact radio sources: the case of FR 0 radio galaxies
The Astronomy and Astrophysics Review Open Access 30 August 2023
-
PIC methods in astrophysics: simulations of relativistic jets and kinetic physics in astrophysical systems
Living Reviews in Computational Astrophysics Open Access 08 July 2021
-
Radio observations of active galactic nuclei with mm-VLBI
The Astronomy and Astrophysics Review Open Access 06 November 2017
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Meier, D. L. Black Hole Astrophysics: The Engine Paradigm (Springer, 2012)
Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977)
Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 418, L79–L83 (2011)
Balbus, S. A. & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214–222 (1991); A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution. Astrophys. J. 376, 223–233 (1991)
Eatough, R. P. et al. A strong magnetic field around the supermassive black hole at the centre of the Galaxy. Nature 501, 391–394 (2013)
Narayan, R., Igumenshchev, I. V. & Abramowicz, M. A. Magnetically arrested disk: an energetically efficient accretion flow. Publ. Astron. Soc. Jpn 55, L69–L72 (2003)
McKinney, J. C., Tchekhovskoy, A. & Blandford, R. D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 423, 3083–3117 (2012)
McKinney, J. C., Tchekhovskoy, A. & Blandford, R. D. Alignment of magnetized accretion disks and relativistic jets with spinning black holes. Science 339, 49–52 (2013)
Tchekhovskoy, A., McKinney, J. C. & Narayan, R. General relativistic modeling of magnetized jets from accreting black holes. J. Phys. Conf. Ser. 372, 012040 (2012)
Tchekhovskoy, A. & McKinney, J. C. Prograde and retrograde black holes: whose jet is more powerful? Mon. Not. R. Astron. Soc. 423, L55–L59 (2012)
Sikora, M., Stawarz, Ł. & Lasota, J.-P. Radio loudness of active galactic nuclei: observational facts and theoretical implications. Astrophys. J. 658, 815–828 (2007)
Lobanov, A. P. Ultracompact jets in active galactic nuclei. Astron. Astrophys. 330, 79–89 (1998)
Pushkarev, A. B. et al. MOJAVE: Monitoring of jets in active galactic nuclei with VLBA experiments. IX. Nuclear opacity. Astron. Astrophys. 545, A113 (2012)
Kovalev, Y. Y., Lobanov, A. P., Pushkarev, A. B. & Zensus, J. A. Opacity in compact extragalactic radio sources and its effect on astrophysical and astrometric studies. Astron. Astrophys. 483, 759–768 (2008)
Müller, C. et al. Dual-frequency VLBI study of Centaurus A on sub-parsec scales. The highest-resolution view of an extragalactic jet. Astron. Astrophys. 530, L11 (2011)
Kadler, M., Ros, E., Lobanov, A. P., Falcke, H. & Zensus, J. A. The twin-jet system in NGC 1052: VLBI-scrutiny of the obscuring torus. Astron. Astrophys. 426, 481–493 (2004)
Hada, K. et al. An origin of the radio jet in M87 at the location of the central black hole. Nature 477, 185–187 (2011)
Martí-Vidal, I. et al. Detection of jet precession in the active nucleus of M 81. Astron. Astrophys. 533, A111 (2011)
Kaspi, S. et al. Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei. Astrophys. J. 533, 631–649 (2000)
Woo, J.-H. & Urry, C. M. Active galactic nucleus black hole masses and bolometric luminosities. Astrophys. J. 579, 530–544 (2002)
Liu, Y., Jiang, D. R. & Gu, M. F. The jet power, radio loudness, and black hole mass in radio-loud active galactic nuclei. Astrophys. J. 637, 669–681 (2006)
Punsly, B. & Zhang, S. Calibrating emission lines as quasar bolometers. Mon. Not. R. Astron. Soc. 412, L123–L127 (2011)
Volonteri, M., Sikora, M., Lasota, J.-P. & Merloni, A. The evolution of active galactic nuclei and their spins. Astrophys. J. 775, 94 (2013)
Ho, L. C. Nuclear activity in nearby galaxies. Annu. Rev. Astron. Astrophys. 46, 475–539 (2008)
Komissarov, S. S., Vlahakis, N., Königl, A. & Barkov, M. V. Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources. Mon. Not. R. Astron. Soc. 394, 1182–1212 (2009)
Clausen-Brown, E., Savolainen, T., Pushkarev, A. B., Kovalev, Y. Y. & Zensus, J. A. Causal connection in parsec-scale relativistic jets: results from the MOJAVE VLBI survey. Astron. Astrophys. 558, A144 (2013)
Sikora, M. & Begelman, M. C. Magnetic flux paradigm for radio loudness of active galactic nuclei. Astrophys. J. 764, L24–L28 (2013)
Fabian, A. C. et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707–495. Nature 459, 540–542 (2009)
McKinney, J. C. Total and jet Blandford-Znajek power in the presence of an accretion disk. Astrophys. J. 630, L5–L8 (2005)
Hawley, J. F. & Krolik, J. H. Magnetically driven jets in the Kerr metric. Astrophys. J. 641, 103–116 (2006)
Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979)
Hirotani, K. Kinetic luminosity and composition of active galactic nuclei jets. Astrophys. J. 619, 73–85 (2005)
O'Sullivan, S. P. & Gabuzda, D. C. Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets. Mon. Not. R. Astron. Soc. 400, 26–42 (2009)
Sokolovsky, K. V., Kovalev, Y. Y., Pushkarev, A. B. & Lobanov, A. P. A. VLBA survey of the core shift effect in AGN jets. I. Evidence of dominating synchrotron opacity. Astron. Astrophys. 532, A38 (2011)
Hovatta, T., Valtaoja, E., Tornikoski, M. & Lähteenmäki, A. Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies. Astron. Astrophys. 494, 527–537 (2009)
Pushkarev, A. B., Kovalev, Y. Y., Lister, M. L. & Savolainen, T. Jet opening angles and gamma-ray brightness of AGN. Astron. Astrophys. 507, L33–L36 (2009)
Savolainen, T. et al. Relativistic beaming and gamma-ray brightness of blazars. Astron. Astrophys. 512, A24 (2010)
Gabuzda, D. C., Vitrishchak, V. M., Mahmud, M. & O’Sullivan, S. P. Radio circular polarization produced in helical magnetic fields in eight active galactic nuclei. Mon. Not. R. Astron. Soc. 384, 1003–1014 (2008)
Pudritz, R. E., Hardcastle, M. J. & Gabuzda, D. C. Magnetic fields in astrophysical jets: from launch to termination. Space Sci. Rev. 169, 27–72 (2012)
Zamaninasab, M. et al. Evidence for a large-scale helical magnetic field in the quasar 3C 454.3. Mon. Not. R. Astron. Soc. 436, 3341–3356 (2013)
McKinney, J. C. General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. Mon. Not. R. Astron. Soc. 368, 1561–1582 (2006)
Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. Astrophys. J. 711, 50–63 (2010)
Tchekhovskoy, A., McKinney, J. C. & Narayan, R. Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst engines. Mon. Not. R. Astron. Soc. 388, 551–572 (2008)
Tchekhovskoy, A., McKinney, J. C. & Narayan, R. Efficiency of magnetic to kinetic energy conversion in a monopole magnetosphere. Astrophys. J. 699, 1789–1808 (2009)
Wandel, A., Peterson, B. M. & Malkan, M. A. Central masses and broad-line region sizes of active galactic nuclei. I. Comparing the photoionization and reverberation techniques. Astrophys. J. 526, 579–591 (1999)
McLure, R. J. & Jarvis, M. J. Measuring the black hole masses of high-redshift quasars. Mon. Not. R. Astron. Soc. 337, 109–116 (2002)
Kaspi, S. et al. The relationship between luminosity and broad-line region size in active galactic nuclei. Astrophys. J. 629, 61–71 (2005)
Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122–129 (2005)
Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey Data Release 7. Astrophys. J. 194, 45 (2011)
Shaw, M. S. et al. Spectroscopy of broad-line blazars from 1LAC. Astrophys. J. 748, 49 (2012)
Celotti, A., Padovani, P. & Ghisellini, G. Jets and accretion processes in active galactic nuclei: further clues. Mon. Not. R. Astron. Soc. 286, 415–424 (1997)
Gu, M., Cao, X. & Jiang, D. R. The bulk kinetic power of radio jets in active galactic nuclei. Mon. Not. R. Astron. Soc. 396, 984–996 (2009)
Novikov, I. D. & Thorne, K. S. in Black Holes (eds Dewitt, C. & Dewitt, B. S. ) 343–450 (Gordon and Breach, Paris, 1973)
Akritas, M. G. & Siebert, J. A test for partial correlation with censored astronomical data. Mon. Not. R. Astron. Soc. 278, 919–924 (1996)
Markwardt, C. B. in Astronomical Data Analysis Software and Systems XVIII (eds Bohlender, D. A., Durand, D. & Dowler, P. ) 251–254 (Astron. Soc. Pacif. Conf. Ser. Vol. 411, Astronomical Society of Pacific, 2009)
Kelly, B. C. Some aspects of measurement error in linear regression of astronomical data. Astrophys. J. 665, 1489–1506 (2007)
Torrealba, J. et al. Optical spectroscopic atlas of the MOJAVE/2cm AGN sample. Rev. Mex. Astron. Astrofis. 48, 9–40 (2012)
Palma, N. I. et al. Multiwavelength observations of the gamma-ray blazar PKS 0528+134 in quiescence. Astrophys. J. 735, 60 (2011)
Di Matteo, T., Allen, S. W., Fabian, A. C., Wilson, A. S. & Young, A. J. Accretion onto the supermassive black hole in M87. Astrophys. J. 582, 133–140 (2003)
Evans, D. A. et al. Chandra and XMM-Newton observations of the nucleus of Centaurus A. Astrophys. J. 612, 786–796 (2004)
Gebhardt, K. et al. The black hole mass in M87 from Gemini/NIFS adaptive optics observations. Astrophys. J. 729, 119 (2011)
Ghisellini, G. et al. General physical properties of bright Fermi blazars. Mon. Not. R. Astron. Soc. 402, 497–518 (2010)
González-Martín, O., Masegosa, J., Márquez, I. & Guainazzi, M. Fitting LINER nuclei within the active galactic nucleus family: a matter of obscuration? Astrophys. J. 704, 1570–1585 (2009)
King, A. L. et al. What is on tap? The role of spin in compact objects and relativistic jets. Astrophys. J. 771, 84 (2013)
Markoff, S. et al. Results from an extensive simultaneous broadband campaign on the underluminous active nucleus M81*: further evidence for mass-scaling accretion in black holes. Astrophys. J. 681, 905–924 (2008)
McNamara, B. R., Rohanizadegan, M. & Nulsen, P. E. J. Are radio active galactic nuclei powered by accretion or black hole spin? Astrophys. J. 727, 39 (2011)
Neumayer, N. et al. The central parsecs of Centaurus A: high-excitation gas, a molecular disk, and the mass of the black hole. Astrophys. J. 671, 1329–1344 (2007)
Kino, M. & Kawakatu, N. Estimate of the total kinetic power and age of an extragalactic jet by its cocoon dynamics: the case of Cygnus A. Mon. Not. R. Astron. Soc. 364, 659–664 (2005)
Acknowledgements
We thank A. Lobanov, M. Sikora and J. McKinney for discussions and N. Sabha for comments on the manuscript. M.Z. was supported by the German Deutsche Forschungsgemeinschaft, DFG, via grant SFB 956 project A2. A.T. was supported by a Princeton Center for Theoretical Science fellowship and by NASA through the Einstein fellowship program, grant PF3-140115.
Author information
Authors and Affiliations
Contributions
M.Z. proposed the experiment, compiled the data and performed most of the analysis. E.C.-B. wrote most of the main text and contributed to the theoretical analysis and implications of the work. T.S. contributed to the analysis and discussion of the data, and A.T. contributed to the theoretical analysis and implications of the work. All authors contributed ideas, discussed the results and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
PowerPoint slides
Source data
Rights and permissions
About this article
Cite this article
Zamaninasab, M., Clausen-Brown, E., Savolainen, T. et al. Dynamically important magnetic fields near accreting supermassive black holes. Nature 510, 126–128 (2014). https://doi.org/10.1038/nature13399
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature13399
This article is cited by
-
The nature of compact radio sources: the case of FR 0 radio galaxies
The Astronomy and Astrophysics Review (2023)
-
BL Lac object OJ 287: exploring a complete spectrum of issues concerning relativistic jets and accretion
Journal of Astrophysics and Astronomy (2022)
-
PIC methods in astrophysics: simulations of relativistic jets and kinetic physics in astrophysical systems
Living Reviews in Computational Astrophysics (2021)
-
How to distinguish an actual astrophysical magnetized black hole mimicker from a true (theoretical) black hole
Astrophysics and Space Science (2021)
-
New clues to jet launching: The inner disks in radio loud quasars may be more stable
Science China Physics, Mechanics & Astronomy (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.