Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamically important magnetic fields near accreting supermassive black holes

Abstract

Accreting supermassive black holes at the centres of active galaxies often produce ‘jets’—collimated bipolar outflows of relativistic particles1. Magnetic fields probably play a critical role in jet formation2,3 and in accretion disk physics4. A dynamically important magnetic field was recently found near the Galactic Centre black hole5. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models3,6,7. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow3 and determine the directionality of jets8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of an AGN jet.
Figure 2: Measured magnetic flux of the jet, Φjet, versus .

Similar content being viewed by others

References

  1. Meier, D. L. Black Hole Astrophysics: The Engine Paradigm (Springer, 2012)

    MATH  Google Scholar 

  2. Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977)

    ADS  Google Scholar 

  3. Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 418, L79–L83 (2011)

    ADS  Google Scholar 

  4. Balbus, S. A. & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214–222 (1991); A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution. Astrophys. J. 376, 223–233 (1991)

    Article  ADS  Google Scholar 

  5. Eatough, R. P. et al. A strong magnetic field around the supermassive black hole at the centre of the Galaxy. Nature 501, 391–394 (2013)

    ADS  CAS  PubMed  Google Scholar 

  6. Narayan, R., Igumenshchev, I. V. & Abramowicz, M. A. Magnetically arrested disk: an energetically efficient accretion flow. Publ. Astron. Soc. Jpn 55, L69–L72 (2003)

    ADS  Google Scholar 

  7. McKinney, J. C., Tchekhovskoy, A. & Blandford, R. D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 423, 3083–3117 (2012)

    ADS  Google Scholar 

  8. McKinney, J. C., Tchekhovskoy, A. & Blandford, R. D. Alignment of magnetized accretion disks and relativistic jets with spinning black holes. Science 339, 49–52 (2013)

    ADS  CAS  PubMed  Google Scholar 

  9. Tchekhovskoy, A., McKinney, J. C. & Narayan, R. General relativistic modeling of magnetized jets from accreting black holes. J. Phys. Conf. Ser. 372, 012040 (2012)

    Google Scholar 

  10. Tchekhovskoy, A. & McKinney, J. C. Prograde and retrograde black holes: whose jet is more powerful? Mon. Not. R. Astron. Soc. 423, L55–L59 (2012)

    ADS  Google Scholar 

  11. Sikora, M., Stawarz, Ł. & Lasota, J.-P. Radio loudness of active galactic nuclei: observational facts and theoretical implications. Astrophys. J. 658, 815–828 (2007)

    ADS  CAS  Google Scholar 

  12. Lobanov, A. P. Ultracompact jets in active galactic nuclei. Astron. Astrophys. 330, 79–89 (1998)

    ADS  Google Scholar 

  13. Pushkarev, A. B. et al. MOJAVE: Monitoring of jets in active galactic nuclei with VLBA experiments. IX. Nuclear opacity. Astron. Astrophys. 545, A113 (2012)

    Google Scholar 

  14. Kovalev, Y. Y., Lobanov, A. P., Pushkarev, A. B. & Zensus, J. A. Opacity in compact extragalactic radio sources and its effect on astrophysical and astrometric studies. Astron. Astrophys. 483, 759–768 (2008)

    ADS  Google Scholar 

  15. Müller, C. et al. Dual-frequency VLBI study of Centaurus A on sub-parsec scales. The highest-resolution view of an extragalactic jet. Astron. Astrophys. 530, L11 (2011)

    ADS  Google Scholar 

  16. Kadler, M., Ros, E., Lobanov, A. P., Falcke, H. & Zensus, J. A. The twin-jet system in NGC 1052: VLBI-scrutiny of the obscuring torus. Astron. Astrophys. 426, 481–493 (2004)

    ADS  CAS  Google Scholar 

  17. Hada, K. et al. An origin of the radio jet in M87 at the location of the central black hole. Nature 477, 185–187 (2011)

    ADS  CAS  PubMed  Google Scholar 

  18. Martí-Vidal, I. et al. Detection of jet precession in the active nucleus of M 81. Astron. Astrophys. 533, A111 (2011)

    Google Scholar 

  19. Kaspi, S. et al. Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei. Astrophys. J. 533, 631–649 (2000)

    ADS  CAS  Google Scholar 

  20. Woo, J.-H. & Urry, C. M. Active galactic nucleus black hole masses and bolometric luminosities. Astrophys. J. 579, 530–544 (2002)

    ADS  Google Scholar 

  21. Liu, Y., Jiang, D. R. & Gu, M. F. The jet power, radio loudness, and black hole mass in radio-loud active galactic nuclei. Astrophys. J. 637, 669–681 (2006)

    ADS  CAS  Google Scholar 

  22. Punsly, B. & Zhang, S. Calibrating emission lines as quasar bolometers. Mon. Not. R. Astron. Soc. 412, L123–L127 (2011)

    ADS  Google Scholar 

  23. Volonteri, M., Sikora, M., Lasota, J.-P. & Merloni, A. The evolution of active galactic nuclei and their spins. Astrophys. J. 775, 94 (2013)

    ADS  Google Scholar 

  24. Ho, L. C. Nuclear activity in nearby galaxies. Annu. Rev. Astron. Astrophys. 46, 475–539 (2008)

    ADS  CAS  Google Scholar 

  25. Komissarov, S. S., Vlahakis, N., Königl, A. & Barkov, M. V. Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources. Mon. Not. R. Astron. Soc. 394, 1182–1212 (2009)

    ADS  Google Scholar 

  26. Clausen-Brown, E., Savolainen, T., Pushkarev, A. B., Kovalev, Y. Y. & Zensus, J. A. Causal connection in parsec-scale relativistic jets: results from the MOJAVE VLBI survey. Astron. Astrophys. 558, A144 (2013)

    ADS  Google Scholar 

  27. Sikora, M. & Begelman, M. C. Magnetic flux paradigm for radio loudness of active galactic nuclei. Astrophys. J. 764, L24–L28 (2013)

    ADS  Google Scholar 

  28. Fabian, A. C. et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707–495. Nature 459, 540–542 (2009)

    ADS  CAS  PubMed  Google Scholar 

  29. McKinney, J. C. Total and jet Blandford-Znajek power in the presence of an accretion disk. Astrophys. J. 630, L5–L8 (2005)

    ADS  Google Scholar 

  30. Hawley, J. F. & Krolik, J. H. Magnetically driven jets in the Kerr metric. Astrophys. J. 641, 103–116 (2006)

    ADS  CAS  Google Scholar 

  31. Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979)

    ADS  CAS  Google Scholar 

  32. Hirotani, K. Kinetic luminosity and composition of active galactic nuclei jets. Astrophys. J. 619, 73–85 (2005)

    ADS  CAS  Google Scholar 

  33. O'Sullivan, S. P. & Gabuzda, D. C. Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets. Mon. Not. R. Astron. Soc. 400, 26–42 (2009)

    ADS  Google Scholar 

  34. Sokolovsky, K. V., Kovalev, Y. Y., Pushkarev, A. B. & Lobanov, A. P. A. VLBA survey of the core shift effect in AGN jets. I. Evidence of dominating synchrotron opacity. Astron. Astrophys. 532, A38 (2011)

    ADS  Google Scholar 

  35. Hovatta, T., Valtaoja, E., Tornikoski, M. & Lähteenmäki, A. Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies. Astron. Astrophys. 494, 527–537 (2009)

    ADS  CAS  Google Scholar 

  36. Pushkarev, A. B., Kovalev, Y. Y., Lister, M. L. & Savolainen, T. Jet opening angles and gamma-ray brightness of AGN. Astron. Astrophys. 507, L33–L36 (2009)

    ADS  CAS  Google Scholar 

  37. Savolainen, T. et al. Relativistic beaming and gamma-ray brightness of blazars. Astron. Astrophys. 512, A24 (2010)

    Google Scholar 

  38. Gabuzda, D. C., Vitrishchak, V. M., Mahmud, M. & O’Sullivan, S. P. Radio circular polarization produced in helical magnetic fields in eight active galactic nuclei. Mon. Not. R. Astron. Soc. 384, 1003–1014 (2008)

    ADS  Google Scholar 

  39. Pudritz, R. E., Hardcastle, M. J. & Gabuzda, D. C. Magnetic fields in astrophysical jets: from launch to termination. Space Sci. Rev. 169, 27–72 (2012)

    ADS  Google Scholar 

  40. Zamaninasab, M. et al. Evidence for a large-scale helical magnetic field in the quasar 3C 454.3. Mon. Not. R. Astron. Soc. 436, 3341–3356 (2013)

    ADS  Google Scholar 

  41. McKinney, J. C. General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. Mon. Not. R. Astron. Soc. 368, 1561–1582 (2006)

    ADS  CAS  Google Scholar 

  42. Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. Astrophys. J. 711, 50–63 (2010)

    ADS  Google Scholar 

  43. Tchekhovskoy, A., McKinney, J. C. & Narayan, R. Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst engines. Mon. Not. R. Astron. Soc. 388, 551–572 (2008)

    ADS  Google Scholar 

  44. Tchekhovskoy, A., McKinney, J. C. & Narayan, R. Efficiency of magnetic to kinetic energy conversion in a monopole magnetosphere. Astrophys. J. 699, 1789–1808 (2009)

    ADS  Google Scholar 

  45. Wandel, A., Peterson, B. M. & Malkan, M. A. Central masses and broad-line region sizes of active galactic nuclei. I. Comparing the photoionization and reverberation techniques. Astrophys. J. 526, 579–591 (1999)

    ADS  CAS  Google Scholar 

  46. McLure, R. J. & Jarvis, M. J. Measuring the black hole masses of high-redshift quasars. Mon. Not. R. Astron. Soc. 337, 109–116 (2002)

    ADS  Google Scholar 

  47. Kaspi, S. et al. The relationship between luminosity and broad-line region size in active galactic nuclei. Astrophys. J. 629, 61–71 (2005)

    ADS  CAS  Google Scholar 

  48. Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122–129 (2005)

    ADS  CAS  Google Scholar 

  49. Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey Data Release 7. Astrophys. J. 194, 45 (2011)

    ADS  Google Scholar 

  50. Shaw, M. S. et al. Spectroscopy of broad-line blazars from 1LAC. Astrophys. J. 748, 49 (2012)

    ADS  Google Scholar 

  51. Celotti, A., Padovani, P. & Ghisellini, G. Jets and accretion processes in active galactic nuclei: further clues. Mon. Not. R. Astron. Soc. 286, 415–424 (1997)

    ADS  Google Scholar 

  52. Gu, M., Cao, X. & Jiang, D. R. The bulk kinetic power of radio jets in active galactic nuclei. Mon. Not. R. Astron. Soc. 396, 984–996 (2009)

    ADS  CAS  Google Scholar 

  53. Novikov, I. D. & Thorne, K. S. in Black Holes (eds Dewitt, C. & Dewitt, B. S. ) 343–450 (Gordon and Breach, Paris, 1973)

    Google Scholar 

  54. Akritas, M. G. & Siebert, J. A test for partial correlation with censored astronomical data. Mon. Not. R. Astron. Soc. 278, 919–924 (1996)

    ADS  Google Scholar 

  55. http://astro.psu.edu/statcodes/cens_tau.f

  56. http://cran.r-project.org/web/packages/ppcor/index.html

  57. http://www.r-project.org

  58. Markwardt, C. B. in Astronomical Data Analysis Software and Systems XVIII (eds Bohlender, D. A., Durand, D. & Dowler, P. ) 251–254 (Astron. Soc. Pacif. Conf. Ser. Vol. 411, Astronomical Society of Pacific, 2009)

    Google Scholar 

  59. http://purl.com/net/mpfit

  60. Kelly, B. C. Some aspects of measurement error in linear regression of astronomical data. Astrophys. J. 665, 1489–1506 (2007)

    ADS  Google Scholar 

  61. http://idlastro.gsfc.nasa.gov

  62. Torrealba, J. et al. Optical spectroscopic atlas of the MOJAVE/2cm AGN sample. Rev. Mex. Astron. Astrofis. 48, 9–40 (2012)

    ADS  CAS  Google Scholar 

  63. Palma, N. I. et al. Multiwavelength observations of the gamma-ray blazar PKS 0528+134 in quiescence. Astrophys. J. 735, 60 (2011)

    ADS  Google Scholar 

  64. Di Matteo, T., Allen, S. W., Fabian, A. C., Wilson, A. S. & Young, A. J. Accretion onto the supermassive black hole in M87. Astrophys. J. 582, 133–140 (2003)

    ADS  Google Scholar 

  65. Evans, D. A. et al. Chandra and XMM-Newton observations of the nucleus of Centaurus A. Astrophys. J. 612, 786–796 (2004)

    ADS  CAS  Google Scholar 

  66. Gebhardt, K. et al. The black hole mass in M87 from Gemini/NIFS adaptive optics observations. Astrophys. J. 729, 119 (2011)

    ADS  Google Scholar 

  67. Ghisellini, G. et al. General physical properties of bright Fermi blazars. Mon. Not. R. Astron. Soc. 402, 497–518 (2010)

    ADS  CAS  Google Scholar 

  68. González-Martín, O., Masegosa, J., Márquez, I. & Guainazzi, M. Fitting LINER nuclei within the active galactic nucleus family: a matter of obscuration? Astrophys. J. 704, 1570–1585 (2009)

    ADS  Google Scholar 

  69. King, A. L. et al. What is on tap? The role of spin in compact objects and relativistic jets. Astrophys. J. 771, 84 (2013)

    ADS  Google Scholar 

  70. Markoff, S. et al. Results from an extensive simultaneous broadband campaign on the underluminous active nucleus M81*: further evidence for mass-scaling accretion in black holes. Astrophys. J. 681, 905–924 (2008)

    ADS  CAS  Google Scholar 

  71. McNamara, B. R., Rohanizadegan, M. & Nulsen, P. E. J. Are radio active galactic nuclei powered by accretion or black hole spin? Astrophys. J. 727, 39 (2011)

    ADS  Google Scholar 

  72. Neumayer, N. et al. The central parsecs of Centaurus A: high-excitation gas, a molecular disk, and the mass of the black hole. Astrophys. J. 671, 1329–1344 (2007)

    ADS  CAS  Google Scholar 

  73. Kino, M. & Kawakatu, N. Estimate of the total kinetic power and age of an extragalactic jet by its cocoon dynamics: the case of Cygnus A. Mon. Not. R. Astron. Soc. 364, 659–664 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Lobanov, M. Sikora and J. McKinney for discussions and N. Sabha for comments on the manuscript. M.Z. was supported by the German Deutsche Forschungsgemeinschaft, DFG, via grant SFB 956 project A2. A.T. was supported by a Princeton Center for Theoretical Science fellowship and by NASA through the Einstein fellowship program, grant PF3-140115.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. proposed the experiment, compiled the data and performed most of the analysis. E.C.-B. wrote most of the main text and contributed to the theoretical analysis and implications of the work. T.S. contributed to the analysis and discussion of the data, and A.T. contributed to the theoretical analysis and implications of the work. All authors contributed ideas, discussed the results and wrote the manuscript.

Corresponding author

Correspondence to M. Zamaninasab.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Table 1 Blazar sample
Extended Data Table 2 Radio galaxy sample
Extended Data Table 3 Partial correlation analysis results based on cens_tau algorithm
Extended Data Table 4 Results of partial correlation analysis based on ppcorr algorithm

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamaninasab, M., Clausen-Brown, E., Savolainen, T. et al. Dynamically important magnetic fields near accreting supermassive black holes. Nature 510, 126–128 (2014). https://doi.org/10.1038/nature13399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13399

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing