Abstract
Mice display robust, stereotyped behaviours towards pups: virgin males typically attack pups, whereas virgin females and sexually experienced males and females display parental care. Here we show that virgin males genetically impaired in vomeronasal sensing do not attack pups and are parental. Furthermore, we uncover a subset of galanin-expressing neurons in the medial preoptic area (MPOA) that are specifically activated during male and female parenting, and a different subpopulation that is activated during mating. Genetic ablation of MPOA galanin neurons results in marked impairment of parental responses in males and females and affects male mating. Optogenetic activation of these neurons in virgin males suppresses inter-male and pup-directed aggression and induces pup grooming. Thus, MPOA galanin neurons emerge as an essential regulatory node of male and female parenting behaviour and other social responses. These results provide an entry point to a circuit-level dissection of parental behaviour and its modulation by social experience.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Numan, M. & Insel, T. R. The Neurobiology of Parental Behavior (Springer, 2003)
Lonstein, J. S. & De Vries, G. J. Sex differences in the parental behavior of rodents. Neurosci. Biobehav. Rev. 24, 669–686 (2000)
Brown, R. Hormonal and experiential factors influencing parental behaviour in male rodents: an integrative approach. Behav. Processes 30, 1–27 (1993)
Rosenblatt, J. S. Nonhormonal basis of maternal behavior in the rat. Science 156, 1512–1514 (1967)
Terkel, J. & Rosenblatt, J. S. Maternal behavior induced by maternal blood plasma injected into virgin rats. J. Comp. Physiol. Psychol. 65, 479–482 (1968)
Moltz, H., Lubin, M., Leon, M. & Numan, M. Hormonal induction of maternal behavior in the ovariectomized nulliparous rat. Physiol. Behav. 5, 1373–1377 (1970)
Svare, B. & Mann, M. Infanticide: genetic, developmental and hormonal influences in mice. Physiol. Behav. 27, 921–927 (1981)
Brooks, R. J. & Schwarzkopf, L. Factors affecting incidence of infanticide and discrimination of related and unrelated neonates in male Mus musculus. Behav. Neural Biol. 37, 149–161 (1983)
Labov, J. B. Factors influencing infanticidal behavior in wild male house mice (Mus musculus). Behav. Ecol. Sociobiol. 6, 297–303 (1980)
vom Saal, F. S. & Howard, L. S. The regulation of infanticide and parental behavior: implications for reproductive success in male mice. Science 215, 1270–1272 (1982)
vom Saal, F. S. Time-contingent change in infanticide and parental behavior induced by ejaculation in male mice. Physiol. Behav. 34, 7–15 (1985)
Numan, M. & Stolzenberg, D. S. Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front. Neuroendocrinol. 30, 46–64 (2009)
Numan, M. Medial preoptic area and maternal behavior in the female rat. J. Comp. Physiol. Psychol. 87, 746–759 (1974)
Segovia, S. & Guillamón, A. Sexual dimorphism in the vomeronasal pathway and sex differences in reproductive behaviors. Brain Res. Brain Res. Rev. 18, 51–74 (1993)
Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500 (2002)
Kimchi, T., Xu, J. & Dulac, C. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014 (2007)
Mennella, J. A. & Moltz, H. Infanticide in the male rat: the role of the vomeronasal organ. Physiol. Behav. 42, 303–306 (1988)
Tachikawa, K. S., Yoshihara, Y. & Kuroda, K. O. Behavioral transition from attack to parenting in male mice: a crucial role of the vomeronasal system. J. Neurosci. 33, 5120–5126 (2013)
Fleming, A., Vaccarino, F., Tambosso, L. & Chee, P. Vomeronasal and olfactory system modulation of maternal behavior in the rat. Science 203, 372–374 (1979)
Liman, E. R., Corey, D. P. & Dulac, C. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc. Natl Acad. Sci. USA 96, 5791–5796 (1999)
Elwood, R. W. Inhibition of infanticide and onset of paternal care in male mice (Mus musculus). J. Comp. Psychol. 99, 457–467 (1985)
Calamandrei, G. & Keverne, E. B. Differential expression of Fos protein in the brain of female mice dependent on pup sensory cues and maternal experience. Behav. Neurosci. 108, 113–120 (1994)
Arendash, G. W. & Gorski, R. A. Effects of discrete lesions of the sexually dimorphic nucleus of the preoptic area or other medial preoptic regions on the sexual behavior of male rats. Brain Res. Bull. 10, 147–154 (1983)
Dominguez, J. M. & Hull, E. M. Dopamine, the medial preoptic area, and male sexual behavior. Physiol. Behav. 86, 356–368 (2005)
Powers, B. & Valenstein, E. Sexual receptivity: facilitation by medial preoptic lesions in female rats. Science 175, 1003–1005 (1972)
Pfaff, D. W. & Sakuma, Y. Facilitation of the lordosis reflex of female rats from the ventromedial nucleus of the hypothalamus. J. Physiol. (Lond.) 288, 189–202 (1979)
Bakker, J., Woodley, S. K., Kelliher, K. R. & Baum, M. J. Sexually dimorphic activation of galanin neurones in the ferret’s dorsomedial preoptic area/anterior hypothalamus after mating. J. Neuroendocrinol. 14, 116–125 (2002)
McAllen, R. M., Tanaka, M., Ootsuka, Y. & McKinley, M. J. Multiple thermoregulatory effectors with independent central controls. Eur. J. Appl. Physiol. 109, 27–33 (2010)
Jennes, L. & Conn, P. Gonadotropin-releasing hormone and its receptors in rat brain. Front. Neuroendocrinol. 15, 51–77 (1994)
Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature Neurosci. 2, 1120–1124 (1999)
Simerly, R. B., Gorski, R. A. & Swanson, L. W. Neurotransmitter specificity of cells and fibers in the medial preoptic nucleus: an immunohistochemical study in the rat. J. Comp. Neurol. 246, 343–363 (1986)
Simerly, R. B. & Swanson, L. W. The organization of neural inputs to the medial preoptic nucleus of the rat. J. Comp. Neurol. 246, 312–342 (1986)
Simerly, R. B. & Swanson, L. W. Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J. Comp. Neurol. 270, 209–242 (1988)
Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007)
Mechenthaler, I. Galanin and the neuroendocrine axes. Cell. Mol. Life Sci. 65, 1826–1835 (2008)
Wynick, D. et al. Galanin regulates prolactin release and lactotroph proliferation. Proc. Natl Acad. Sci. USA 95, 12671–12676 (1998)
Lindeberg, J. et al. Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus. Genesis 40, 67–73 (2004)
Caldwell, H. K., Lee, H.-J., Macbeth, A. H. & Young, W. S. Vasopressin: behavioral roles of an “original” neuropeptide. Prog. Neurobiol. 84, 1–24 (2008)
Lee, H.-J., Macbeth, A. H., Pagani, J. H. & Young, W. S. Oxytocin: the great facilitator of life. Prog. Neurobiol. 88, 127–151 (2009)
Betley, J. N., Cao, Z. F. H., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013)
Numan, M. et al. The importance of the basolateral/basomedial amygdala for goal-directed maternal responses in postpartum rats. Behav. Brain Res. 214, 368–376 (2010)
Champagne, F. A., Diorio, J., Sharma, S. & Meaney, M. J. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc. Natl Acad. Sci. USA 98, 12736–12741 (2001)
Champagne, F. A., Weaver, I. C. G., Diorio, J., Sharma, S. & Meaney, M. J. Natural variations in maternal care are associated with estrogen receptor alpha expression and estrogen sensitivity in the medial preoptic area. Endocrinology 144, 4720–4724 (2003)
Trainor, B. C. & Marler, C. A. Testosterone, paternal behavior, and aggression in the monogamous California mouse (Peromyscus californicus). Horm. Behav. 40, 32–42 (2001)
Bridges, R. S., DiBiase, R., Loundes, D. D. & Doherty, P. C. Prolactin stimulation of maternal behavior in female rats. Science 227, 782–784 (1985)
Lucas, B. K., Ormandy, C. J., Binart, N., Bridges, R. S. & Kelly, P. A. Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 139, 4102–4107 (1998)
Schneider, J. S. et al. Progesterone receptors mediate male aggression toward infants. Proc. Natl Acad. Sci. USA 100, 2951–2956 (2003)
Pedersen, C. A., Ascher, J. A., Monroe, Y. L. & Prange, A. J., Jr Oxytocin induces maternal behavior in virgin female rats. Science 216, 648–650 (1982)
Insel, T. R. & Young, L. J. The neurobiology of attachment. Nature Rev. Neurosci. 2, 129–136 (2001)
Isogai, Y. et al. Molecular organization of vomeronasal chemoreception. Nature 478, 241–245 (2011)
Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011)
Soriano, P. The PDGFα receptor is required for neural crest cell development and for normal patterning of the somites. Development 124, 2691–2700 (1997)
Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013)
Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009)
Yizhar, O., Fenno, L. & Davidson, T. Optogenetics in neural systems. Neuron 71, 9–34 (2011)
Acknowledgements
We thank K. Deisseroth for the Cre-dependent AAV-ChR2:EYFP construct; E. Boyden for the Cre-dependent AAV-GFP construct; N. Shah for the AAV-Flex-taCasp3-TEVp virus; S. Sullivan for behaviour annotation and scoring; R. Hellmiss for figure artwork; E. Soucy and J. Greenwood for technical assistance. We also thank members of the Dulac and Uchida laboratories and V. Murthy, A. Schier and M. Meister for advice on experiments and statistical analysis and comments on the manuscript, and the anonymous reviewers for their helpful suggestions and comments. This work was supported by the Howard Hughes Medical Institute and the National Institute of Health (NIDCD).
Author information
Authors and Affiliations
Contributions
Z.W. and C.G.D. conceived and designed the study. Z.W. and A.E.A. performed the experiments and collected the data. J.F.B. and Z.W. developed the setup for ChR2-mediated cell activation. M.W.-U. constructed the AAV-DTA virus. Z.W. and C.G.D. interpreted the results and wrote the paper with comments from A.E.A., J.F.B. and M.W.-U.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 Identification of Gal as a marker for cells involved in parenting and characterization of MPOA Gal+ cells.
a, Enrichment ratio of markers in parenting induced MPOA c-fos in virgin females. The enrichment ratio of a given marker is calculated as the percentage of the c-fos+ cells co-expressing the marker, divided by the percentage of NeuN+ cells co-expressing this marker. b, The percentages of parenting induced MPOA c-fos+ cells co-expressing markers and the percentages of marker cells co-expressing c-fos. c, Percentages of Gal+ cells in the MPOA in virgin and sexually experienced males and females fail to identify any sexual dimorphism in MPOA Gal+ cell representation. Mean + s.e.m., one-way ANOVA, P > 0.2. d, Fold increase of Gal mRNA in situ staining intensity compared to background in virgin females, virgin males and fathers. Gal mRNA expression is slightly higher (10% increase) in females than in males. Mean + s.e.m., one-way ANOVA, ***P < 0.001, NS, not significant. e, f, Percentages of c-fos+ cells co-expressing Gad1 in fathers and virgin females. ND, not determined. Mean + s.e.m., t-test, **P < 0.01. g, h, Percentages of Gal+ cells co-expressing Gad1 in virgin males, fathers and virgin females. Mean + s.e.m., one-way ANOVA, P > 0.1.
Extended Data Figure 2 Targeted Gal+ cell ablation in the MPOA.
a, Co-labelling of Gal and Cre expressing cells by mRNA in situ hybridization in Gal-Cre females indicates near perfect overlap. b, Schematic map of the Cre-dependent AAV-DTA virus; DTA is doubly flanked by two sets of incompatible lox sites and inverted to enable transcription after Cre-mediated recombination. c, Gal mRNA expression in the MPOA of ablated and control males. d, Number of MPOA Gal+ cells in ablation group compared to controls. Mean + s.e.m., t-test, ***P < 0.001. e, Number of MPOA Trh+ cells in the ablation group and control. Mean + s.e.m., t-test, P > 0.2. f–h, Gal+ cell numbers in the AVPe (f), anterior part of the PVN (g) and the DMH (h) in MPOA targeted ablation compared to control. Mean + s.e.m., t-test, P > 0.1.
Extended Data Figure 3 Females with MPOA Gal+ cell ablation compared to Gal-Cre+ controls injected with AAV-Flex-GFP.
a, Behaviour of MPOA Gal+ cell ablated virgin females with over 50% ablation efficiency (n = 15) compared to Gal-Cre+ controls injected with AAV-Flex-GFP (n = 13). Chi-square test, P < 0.05. b, Percentage of pups retrieved by Gal+ cell ablated virgin females as a function of time compared to the controls. The retrieving data of the two pups in each test are combined. Kolmogorov–Smirnov test, P < 0.05. c–f, Crouching (c), pup grooming (d), nest building (e) and maternal interaction (f) in the Gal+ cell ablated virgin females and control. Mean ± s.e.m. Mann–Whitney test, *P < 0.05, **P < 0.01, ***P < 0.001. The control females with the longest crouching and of nest building duration are different individuals.
Extended Data Figure 4 Deficits in retrieving behaviour of mothers with MPOA Gal+ cell ablation.
a, Behaviour of MPOA Gal+ cell ablated mothers (n = 8) compared to controls (n = 8). Fisher’s exact test, P < 0.05. b, Number of pups retrieved by each mother. Mean ± s.e.m. Mann–Whitney test, *P < 0.05. c, Percentage of pups retrieved by the ablation group as a function of time compared to the controls. The retrieving data of the four pups in each test are combined. Kolmogorov–Smirnov test, P < 0.001.
Extended Data Figure 5 Mating, inter-male aggression and locomotor activity of MPOA Gal+ cell ablated fathers.
a-c, Locomotor behaviour of MPOA Gal+ cell ablated and control fathers in a 5 min test in an open arena, measuring the distance moved (a), time spent in the centre zone (b) and the average velocity (c). Mean + s.e.m., t-test, P > 0.3. d–f, Inter-male aggression of MPOA Gal+ cell ablated and control fathers, measuring duration of attack (d), latency to attack (e) and duration of grooming the intruder (f). Mean ± s.e.m. Mann–Whitney test, P > 0.2. g–i, Duration of mounting (g), latency to mount (h) and duration of mounting with pelvic thrust (i) of MPOA Gal+ cell ablated fathers compared to controls. Mean ± s.e.m. Mann–Whitney test, *P < 0.05.
Extended Data Figure 6 Parenting, mating and inter-male aggression of MPOA Th+ cell ablated fathers.
a, Th mRNA expression in the MPOA of Th+ cell ablated and control fathers. b, Number of MPOA Th+ cells in ablation group compared to controls. Mean + s.e.m., t-test, ***P < 0.001. c, Number of AVPe Th+ cells in MPOA targeted ablation. Mean + s.e.m., t-test, P = 0.07. d, The number of MPOA Th+ cell loss compared to the Gal+ cell ablation experiments. One male had a failed Th+ cell ablation and was removed from the data set hereafter. The Th+ cell loss is ∼87% of the Gal+ cell loss. e, Behaviour type of MPOA Th+ cell ablated fathers compared to controls. Fisher’s exact test, P > 0.6. f, Combined percentage of pups (out of two) retrieved by the Th+ cell ablation group as a function of time compared to the controls. Kolmogorov–Smirnov test, P > 0.9. g–i, Crouching (g), pup grooming (h) and nest building (i) in the Th+ cell ablated fathers and control. Mean ± s.e.m. Mann–Whitney test, P > 0.2. The control male with the longest pup grooming also has the longest nest building activity, but not the longest duration of crouching. j–l, Duration of mounting (j), latency to mount (k) and duration of mounting with pelvic thrust (l) of MPOA Th+ cell ablated males compared to control in a mating assay. Mean ± s.e.m. Mann–Whitney test, P > 0.3. m–o, Duration of attack (m), latency to attack (n) and duration of grooming the intruder (o) in MPOA Th+ cell ablated males compared to control in an inter-male aggression assay. Mean ± s.e.m. Mann–Whitney test, P > 0.3.
Extended Data Figure 7 Behaviour raster plot of Gal::ChR2 and control virgin males with and without light illumination.
Each row represents a single trial lasting for 5 min or until the male attacked the pup. Trials are grouped by experiment conditions and sorted by trial length. Roman numerals indicate the sample trials shown in Fig. 5f. Various elements of the behaviour are colour coded and labelled in the insert.
Extended Data Figure 8 Behaviour raster plot of mated Gal::ChR2 and control males with and without light illumination.
Each row represents a 10-min trial. Trials are grouped by experiment conditions. Roman numerals indicate the sample trials shown in Fig. 5i. Various elements of the behaviour are colour coded and labelled in the insert.
Extended Data Figure 9 Mating, inter-male aggression and locomotor activity of virgin males with MPOA Gal+ cell activation and controls of light stimulation and viral infection.
a–c, Duration of mounting (a), latency to mount (b) and duration of mounting with pelvic thrust (c) in virgin males with Gal+ cell activation compared to controls in a mating assay. Paired t-test, P > 0.7. d–f, Duration of attack (d), latency to attack (e) and duration of grooming the intruder (f) in virgin males with Gal+ cell activation compared to controls in an inter-male aggression assay. Paired t-test, *P < 0.05, NS. not significant. g, Distance moved in virgin males with Gal+ cell activation compared to controls. Paired t-test, ***P < 0.001. h, i, Time spent sniffing the intruder in mating (h) and inter-male aggression (i) assay. Paired t-test, P > 0.6. j, The duration of light stimulation in each behaviour test as a percentage of the total trial length. Mean + s.e.m., one-way ANOVA, P > 0.6. k, The percentages of Gal+ and Gal+/c-fos+ cells co-expressing fluorescent protein, in females injected with AAV5-Flex-ChR2-EYFP or AAV8-Flex-GFP after maternal interaction with pups. Mean + s.e.m., two-way ANOVA examining the differences in the infection of the two viruses and the two cell populations, P > 0.2 for both factors and the interaction between them.
Rights and permissions
About this article
Cite this article
Wu, Z., Autry, A., Bergan, J. et al. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509, 325–330 (2014). https://doi.org/10.1038/nature13307
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature13307
This article is cited by
-
Midbrain node for context-specific vocalisation in fish
Nature Communications (2024)
-
Independent inhibitory control mechanisms for aggressive motivation and action
Nature Neuroscience (2024)
-
Imprinted genes and the manipulation of parenting in mammals
Nature Reviews Genetics (2023)
-
Antagonistic circuits mediating infanticide and maternal care in female mice
Nature (2023)
-
Urocortin-3 neurons in the perifornical area are critical mediators of chronic stress on female infant-directed behavior
Molecular Psychiatry (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.