Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53

A Corrigendum to this article was published on 21 January 2015

This article has been updated


Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear1,2. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event3. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a BRAF(V600E) mouse model. In mice expressing BRAF(V600E) in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. Here we show that sunscreen (UVA superior, UVB sun protection factor (SPF) 50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours showed increased numbers of single nucleotide variants and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in approximately 40% of cases. TP53 is an accepted UVR target in human non-melanoma skin cancer, but is not thought to have a major role in melanoma4. However, we show that, in mice, mutant Trp53 accelerated BRAF(V600E)-driven melanomagenesis, and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans5. Furthermore, we identify TP53/Trp53 as a UVR-target gene that cooperates with BRAF(V600E) to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UVR accelerates BRAF(V600E)-driven naevogenesis.
Figure 2: UVR accelerates BRAF(V600E)-driven melanomagenesis.
Figure 3: Genome analysis of UVR-driven melanomas.
Figure 4: Mutant Trp53 accelerates BRAF(V600E)-driven melanomagenesis.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Data deposits

Exome sequence and aCGH data have been deposited in the European Nucleotide Archive under study accession number PRJEB6330.

Change history


  1. Whiteman, D. C. et al. Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J. Natl. Cancer Inst. 95, 806–812 (2003)

    Article  Google Scholar 

  2. Gilchrest, B. A., Eller, M. S., Geller, A. C. & Yaar, M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med. 340, 1341–1348 (1999)

    Article  CAS  Google Scholar 

  3. Yeh, I., von Deimling, A. & Bastian, B. C. Clonal BRAF mutations in melanocytic nevi and initiating role of BRAF in melanocytic neoplasia. J. Natl. Cancer Inst. 105, 917–919 (2013)

    Article  CAS  Google Scholar 

  4. Tsao, H., Chin, L., Garraway, L. A. & Fisher, D. E. Melanoma: from mutations to medicine. Genes Dev. 26, 1131–1155 (2012)

    Article  CAS  Google Scholar 

  5. Harrison, S. L., MacLennan, R., Speare, R. & Wronski, I. Sun exposure and melanocytic naevi in young Australian children. Lancet 344, 1529–1532 (1994)

    Article  CAS  Google Scholar 

  6. Dhomen, N. et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294–303 (2009)

    Article  CAS  Google Scholar 

  7. Pontén, F., Berne, B., Ren, Z. P., Nister, M. & Ponten, J. Ultraviolet light induces expression of p53 and p21 in human skin: effect of sunscreen and constitutive p21 expression in skin appendages. J. Invest. Dermatol. 105, 402–406 (1995)

    Article  Google Scholar 

  8. Rudolph, P., Tronnier, M., Menzel, R., Moller, M. & Parwaresch, R. Enhanced expression of Ki-67, topoisomerase IIα, PCNA, p53 and p21WAF1/Cip1 reflecting proliferation and repair activity in UV-irradiated melanocytic nevi. Hum. Pathol. 29, 1480–1487 (1998)

    Article  CAS  Google Scholar 

  9. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2002)

    Article  Google Scholar 

  10. Thomas, N. E. et al. Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma. Cancer Epidemiol. Biomarkers Prev. 16, 991–997 (2007)

    Article  CAS  Google Scholar 

  11. Vultur, A. & Herlyn, M. SnapShot: melanoma. Cancer Cell 23, 706 (2013)

    Article  CAS  Google Scholar 

  12. Pfeifer, G. P., You, Y. H. & Besaratinia, A. Mutations induced by ultraviolet light. Mutat. Res. 571, 19–31 (2005)

    Article  CAS  Google Scholar 

  13. Kato, S. et al. Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Song, H., Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nature Cell Biol. 9, 573–580 (2007)

    Article  CAS  Google Scholar 

  15. Willis, A., Jung, E. J., Wakefield, T. & Chen, X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 23, 2330–2338 (2004)

    Article  CAS  Google Scholar 

  16. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004)

    Article  CAS  Google Scholar 

  17. Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genet. 41, 544–552 (2009)

    Article  CAS  Google Scholar 

  18. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012)

    Article  CAS  Google Scholar 

  19. Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genet. 44, 1006–1014 (2012)

    Article  CAS  Google Scholar 

  20. Patton, E. E. & Zon, L. I. Taking human cancer genes to the fish: a transgenic model of melanoma in zebrafish. Zebrafish 1, 363–368 (2005)

    Article  Google Scholar 

  21. Goel, V. K. et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28, 2289–2298 (2009)

    Article  CAS  Google Scholar 

  22. Bald, T. et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507, 109–113 (2014)

    Article  ADS  CAS  Google Scholar 

  23. Noonan, F. P. et al. Neonatal sunburn and melanoma in mice. Nature 413, 271–272 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Luo, C. et al. Loss of ARF sensitizes transgenic BRAFV600E mice to UV-induced melanoma via suppression of XPC. Cancer Res. 73, 4337–4348 (2013)

    Article  CAS  Google Scholar 

  25. Zaidi, M. R. et al. Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature 469, 548–553 (2011)

    Article  ADS  CAS  Google Scholar 

  26. Green, A. et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet 354, 723–729 (1999)

    Article  CAS  Google Scholar 

  27. Green, A. C., Williams, G. M., Logan, V. & Strutton, G. M. Reduced melanoma after regular sunscreen use: randomized trial follow-up. J. Clin. Oncol. 29, 257–263 (2011)

    Article  CAS  Google Scholar 

  28. Goldenhersh, M. A. & Koslowsky, M. Increased melanoma after regular sunscreen use? J. Clin. Oncol. 29, e557–e558 (2011)

    Article  Google Scholar 

  29. Planta, M. B. Sunscreen and melanoma: is our prevention message correct? J. Am. Board Fam. Med. 24, 735–739 (2011)

    Article  Google Scholar 

  30. Viros, A. et al. Improving melanoma classification by integrating genetic and morphologic features. PLoS Med. 5, e120 (2008)

    Article  Google Scholar 

  31. Workman, P. et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 102, 1555–1577 (2010)

    Article  CAS  Google Scholar 

  32. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

    Article  CAS  Google Scholar 

  33. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)

    Article  CAS  Google Scholar 

  34. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    Article  Google Scholar 

  35. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012)

    Article  CAS  Google Scholar 

  36. Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28, 311–317 (2012)

    Article  CAS  Google Scholar 

  37. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010)

    Article  CAS  Google Scholar 

  38. Turajlic, S. et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res. 22, 196–207 (2012)

    Article  CAS  Google Scholar 

Download references


This work was supported by Cancer Research UK (C107/A10433; C5759/A12328; A13540; A17240), the Wenner-Gren Foundations, Stockholm, Teggerstiftelsen (M.P.) and a FEBS Long-Term Fellowship (B.S.-L.). We thank G. Ashton for technical assistance and A. Young for helpful discussions. We would like to acknowledge the contribution of the melanoma specimen donors and research groups to The Cancer Genome Atlas.

Author information

Authors and Affiliations



A.V., B.S.-L. and R.M. designed the study, analysed the data and wrote the paper. M.P. designed and performed experiments and analysed data. S.J.F. designed and performed bioinformatics analysis and analysed data. K.H., J.R., M.R.G., M.C. and N.D. performed experiments. S.E. validated WES SNVs.

Corresponding author

Correspondence to Richard Marais.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Methodology and UVR spectrum.

a, Schematic representation of experimental schedule, showing induction of BRAF(V600E) by tamoxifen at 8 weeks of age followed by weekly exposure to UVR starting 4 weeks later, and for up to 6 months. b, Graph showing spectral radiation distribution for the Waldmann UV6 lamp used in these studies. The UVA and UVB regions are indicated. c, Photomicrograph of Trp53 staining in interfollicular and follicular keratinocytes (arrows) 24 h after UVR exposure. Asterisks indicate hair follicles. Scale bar, 50 μm.

Extended Data Figure 2 UVR induced melanocytic proliferation in BRAF(V600E) mice.

Photomicrographs showing 4′,6-diamidino-2-phenylindole (DAPI), S100 and Ki-67 immunofluorescence staining, together with a merged image in cloth-protected and UVR-exposed areas of the mid-dermis from BRAF(V600E) mice 72 h after UVR exposure. The experiment was repeated in 3 different skin sections of 5 animals. Scale bar, 30 μm.

Extended Data Figure 3 UVR induces naevogenesis in BRAF(V600E) mice.

a, Schematic representation of experimental processing of mouse skin. Three skin sections (long rectangular boxes) were cut perpendicular to the longitudinal axis of the mice to span the UVR-exposed and protected areas (as marked by the dotted line) of the tamoxifen-treated shaved area (pink). b, Photomicrograph of H&E-stained representative skin from the protected and UVR-exposed skin of a tamoxifen-treated BRAF(V600E) mouse subjected to UVR exposure and examined at 7 days (n = 5). Dotted line: UVR treatment line demarcation. Scale bar, 0.4 mm. c, Photomicrograph of H&E-stained skin from the boxed black area in b, showing the cloth-protected skin of a tamoxifen-treated BRAF(V600E) mouse subjected to UVR exposure and examined at 7 days. Black boxes show individual naevi. Double-headed arrow shows example of maximum diameter of a single naevus. Scale bar, 300 µm. d, Photomicrograph of H&E-stained skin from the dashed boxed black area in b, showing the UVR-exposed skin of a tamoxifen-treated BRAF(V600E) mouse subjected to UVR exposure and examined at 7 days. Black boxes show individual naevi. Scale bar, 300 µm. e, Photomicrograph of H&E-stained skin from the cloth-protected and UVR-exposed skin of a tamoxifen-treated CreERT2 control mouse subjected to weekly UVR exposure for 6 months. Scale bar, 300 µm. f, Photograph showing macroscopic appearance of protected and UVR-exposed skin from the tamoxifen-treated CreERT2 control mouse shown in a. Original magnification, ×2.

Extended Data Figure 4 UVR-accelerated BRAF(V600E)-driven tumours have similar histology to BRAF(V600E)-driven tumours from non-UVR-exposed animals.

a, Photomicrograph of an H&E-stained tumour from a UVR-treated BRAF(V600E) mouse highlighting the presence of atypical heterogeneous spindle dendritic and pigment-producing cells (black asterisks and arrow respectively, left panel) and atypical plump spindle cells and mitotic figures (white asterisks and black arrowhead respectively, right panel). Scale bar, 25 µm. b, Photomicrograph of an H&E-stained tumour from a UVR-treated BRAF(V600E) mouse highlighting a region of dermal ulceration (black arrow). Scale bar, 0.5 mm. c, Photomicrograph of H&E-stained tumours from non-UVR exposed (left panel) and UVR-exposed (right panel) BRAF(V600E) mice, showing the presence of nuclear pleomorphism (asterisks) in both tumours. Scale bar, 10 µm. d, Photomicrograph of an S100-stained tumour from a UVR-exposed BRAF(V600E) mouse. Scale bar, 100 µm. e, Photomicrograph of an HMB-45/MelanA-stained tumour from a UVR-exposed BRAF(V600E) mouse. Scale bar, 50 µm. f, Photomicrograph of a Ki-67-stained tumour from a UVR-exposed BRAF(V600E) mouse. Scale bar, 50 µm.

Extended Data Figure 5 Sunscreen blocks the short-term effects of UVR exposure.

a, Photomicrograph showing lack of Trp53 staining in the cloth-protected (Protected) and UVR-exposed, sunscreen-protected (UVR+SS) skin of a BRAF(V600E) mouse after 24 h of UVR exposure (n = 5). Scale bar, 40 µm. b, Photomicrograph of H&E-stained skin from the cloth protected (Protected) and UVR-exposed, sunscreen-protected (UVR+SS) regions of a BRAF(V600E) mouse after 24 h of UVR exposure. Scale bar, 300 µm. c, High-magnification photomicrograph of H&E-stained skin from the cloth protected (Protected) and UVR-exposed sunscreen-protected (UVR+SS) regions of a BRAF(V600E) mouse after 24 h of UVR exposure showing absence of apoptotic keratinocytes. d, Photomicrograph of H&E-stained skin from a cloth-protected (Protected; left), UVA-exposed (UVA; centre), and UVA-exposed, sunscreen-protected (UVA+SS; right) skin of a mouse after 72 h of UVR exposure. Scale bar, 300 µm (n = 5). The photomicrographs below the main images show areas of higher magnification of the images above. Asterisk indicates epidermal hypertrophy; D indicates plump collagen bundles densely located in the dermis. Scale bar, 150 µm.

Extended Data Figure 6 UVA-induced epidermal and dermal thickening after UVA radiation is abrogated by the use of sunscreen.

a, Photomicrographs of H&E-stained epidermis from the cloth-protected (Protected) and UVR-exposed, sunscreen-protected (UVR+SS) skin of a BRAF(V600E) mouse 7 days (d) after UVR exposure showing the similarity in the number and size of naevi in the two regions (n = 5). Scale bar, 300 µm. b, Photographs showing the macroscopic appearance of the cloth-protected (Protected) and UVR-exposed, sunscreen-protected (UVR+SS) skin from a BRAF(V600E) mouse 5 months after UVR. c, Photomicrographs of S100, HMB-45/MelanA- and Ki-67-stained tumours from UVR-exposed, sunscreen-protected (UVR+SS) mice. Scale bar, 50 µm.

Extended Data Figure 7 Tumours with a Trp53/TP53 mutation.

a, Boxplot graph showing median number of SNVs per Mb (SNVs per Mb) in UVR-exposed mutant Trp53, or UVR-exposed wild-type Trp53 (WT-Trp53) tumours. NS, not significant (Mann–Whitney test). b, Photomicrographs of S100, HMB-45/MelanA- and Ki-67-stained tumour sections from a BRAF(V600E)/Trp53(R172H) mouse. Scale bar, 50 µm. c, Kaplan–Meier plot showing melanoma-free survival in control mice (CreERT2; black line); BRAF(V600E) mice (BRAF(V600E) blue line); and BRAF(V600E) mice crossed with PTENflox/+ mice (BRAF(V600E)/ PTENflox/+; orange line). d, Boxplot graphs showing proportion of C-to-T (G-to-A) transitions in human primary melanomas from the TCGA data set (left panel), human metastatic melanomas from the TCGA data set (middle) and human metastatic melanomas from the Yale University data set (right) harbouring wild-type TP53 (TP53 WT) or mutations in TP53 (TP53 mut); WSRT.

Extended Data Table 1 UVR induces Trp53 and apoptosis in epidermal keratinocytes
Extended Data Table 2 Quantification of naevi
Extended Data Table 3 Summary of Trp53 mutations in UVR-exposed BRAF(V600E) mouse tumours and the TP53 mutation context in humans

Supplementary information

Supplementary Table

This file contains Supplementary Table 1. (XLS 1140 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viros, A., Sanchez-Laorden, B., Pedersen, M. et al. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 511, 478–482 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer