Abstract

Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons1,2,3,4. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics5 and the flux limitations of ultrafast X-ray sources6,7. Such a situation exists for archetypal polypyridyl iron complexes, such as [Fe(2,2′-bipyridine)3]2+, where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy6,7,8,9,10,11,12,13,14,15. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of [Fe(2,2′-bipyridine)3]2+ on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 40–48 (2001)

  2. 2.

    , , & Photoinduced magnetization of a cobalt-iron cyanide. Science 272, 704–705 (1996)

  3. 3.

    & Photosensitization of TiO2 by Fe-II(2,2′-bipyridine-4,4′-dicarboxylic acid)2(CN)2: band selective electron injection from ultra-short-lived excited states. J. Am. Chem. Soc. 120, 843–844 (1998)

  4. 4.

    & Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 293, 1639–1641 (2001)

  5. 5.

    , & Fast natural and magnetic circular dichroism spectroscopy. Annu. Rev. Phys. Chem. 48, 453–479 (1997)

  6. 6.

    et al. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex. Science 323, 489–492 (2009)

  7. 7.

    et al. Femtosecond soft X-ray spectroscopy of solvated transition-metal complexes: deciphering the interplay of electronic and structural dynamics. J. Phys. Chem. Lett. 2, 880–884 (2011)

  8. 8.

    & in Spin Crossover in Transition Metal Compounds I Vol. 233, Topics in Current Chemistry (eds & ) 1–47 (Springer, 2004)

  9. 9.

    , , , & Lifetimes, spectra, and quenching of the excited-states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II). J. Am. Chem. Soc. 102, 1309–1319 (1980)

  10. 10.

    Intersystem crossing in the Fe(PTZ)6 (BF4)2 spin crossover system (PTZ = 1-propyltetrazole). J. Chem. Phys. 94, 2741–2748 (1991)

  11. 11.

    et al. Subpicosecond 1MLCT-5T2 intersystem crossing of low-spin polypyridyl ferrous complexes. J. Am. Chem. Soc. 115, 298–307 (1993)

  12. 12.

    & Femtosecond excited-state dynamics of an iron(II) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 4092–4097 (2000)

  13. 13.

    et al. Ultrafast nonadiabatic dynamics of [Fe(II)(bpy)3]2+ in solution. J. Am. Chem. Soc. 129, 8199–8206 (2007)

  14. 14.

    et al. Vibrational coherences and relaxation in the high-spin state of aqueous [Fe-II(bpy)3]2+. Angew. Chem. Int. Edn 48, 7184–7187 (2009)

  15. 15.

    et al. Femtosecond X-ray absorption spectroscopy at a hard X-ray free electron laser: application to spin crossover dynamics. J. Phys. Chem. A 117, 735–740 (2013)

  16. 16.

    et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010)

  17. 17.

    et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nature Photon. 7, 215–218 (2013)

  18. 18.

    et al. Guest-host interactions investigated by time-resolved X-ray spectroscopies and scattering at MHz rates: solvation dynamics and photoinduced spin transition in aqueous [Fe(bipy)3]2+. J. Phys. Chem. A 116, 9878–9887 (2012)

  19. 19.

    et al. Probing the 3d spin momentum with X-ray emission spectroscopy: the case of molecular-spin transitions. J. Phys. Chem. B 110, 11647–11653 (2006)

  20. 20.

    & Natural widths of atomic K and L levels, K-alpha X-ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data 8, 329–338 (1979)

  21. 21.

    & Study of the light-induced spin crossover process of the [Fe(II)(bpy)3]2+ complex. Chemistry 16, 4550–4556 (2010)

  22. 22.

    & On the role of the metal-to-ligand charge transfer states in the light-induced spin crossover in Fe-II(bpy)3. Int. J. Quantum Chem. 111, 3385–3393 (2011)

  23. 23.

    & High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes — electronic and structural information. Coord. Chem. Rev. 249, 65–95 (2005)

  24. 24.

    High resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 101, 1779–1808 (2001)

  25. 25.

    , , , & Probing valence orbital composition with iron K β X-ray emission spectroscopy. J. Am. Chem. Soc. 132, 9715–9727 (2010)

  26. 26.

    et al. Light-induced spin crossover in Fe(II)-based complexes: the full photocycle unraveled by ultrafast optical and X-ray spectroscopies. Coord. Chem. Rev. 254, 2677–2686 (2010)

  27. 27.

    et al. Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe(2,2′-bipyridine)3]2+. Chemistry 19, 17541–17551 (2013)

  28. 28.

    Relationships between temperature, magnetic moment, and continuous symmetry measures in spin crossover complexes. J. Am. Chem. Soc. 125, 6795–6802 (2003)

  29. 29.

    et al. Picosecond X-ray absorption spectroscopy of a photoinduced iron(II) spin crossover reaction in solution. J. Phys. Chem. A 110, 38–44 (2006)

  30. 30.

    et al. Direct probing of spin state dynamics coupled with electronic and structural modifications by picosecond time-resolved XAFS. J. Am. Chem. Soc. 132, 61–63 (2010)

  31. 31.

    Time-Resolved X-Ray Absorption Spectroscopy of Transition Metal Complexes. Ph.D. thesis, École Polytechnique Fédérale de Lausanne. (2006)

  32. 32.

    et al. A single-shot intensity-position monitor for hard X-ray FEL sources. Proc. SPIE 8140, 81400Q (2011)

  33. 33.

    et al. A multi-crystal wavelength dispersive X-ray spectrometer. Rev. Sci. Instrum. 83, 9 (2012)

  34. 34.

    , , , & X-ray tests of a pixel array detector for coherent X-ray imaging at the Linac Coherent Light Source. J. Instrum. 4, P03001 (2009)

  35. 35.

    et al. Spectral encoding of X-ray/optical relative delay. Opt. Express 19, 21855–21865 (2011)

  36. 36.

    et al. Picosecond time-resolved X-ray emission spectroscopy: ultrafast spin-state determination in an iron complex. Angew. Chem. Int. Edn 49, 5910–5912 (2010)

  37. 37.

    et al. Spin-state studies with XES and RIXS: From static to ultrafast. J. Elec. Spec. Relat. Phenom. 188, 166–171 (2013)

  38. 38.

    & Core Level Spectroscopy of Solids (CRC Press, Boca Raton, 2008)

  39. 39.

    et al. Mixed-valence behavior and strong correlation effects of metal phthalocyanines adsorbed on metals. Phys. Rev. B 83, 220401 (2011)

  40. 40.

    , & Applied Linear Regression Models (McGraw-Hill/Irwin, 2004)

Download references

Acknowledgements

We thank P. Frank, B. Lin and S. DeBeer for discussion, S. DeBeer for some model iron complex X-ray fluorescence spectra, and D. Stanbury for providing some iron complexes. Experiments were carried out at LCLS and SSRL, which are National User Facilities operated for DOE and OBES respectively by Stanford University. W.Z., R.W.H., H.W.L., D.A.M., Z.S. and K.J.G. acknowledge support from the AMOS programme within the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy. E.I.S. acknowledges support from the NSF (CHE-0948211). R.G.H. acknowledges a Gerhard Casper Stanford Graduate Fellowship and the Achievements Rewards for College Scientists (ARCS) Foundation. T.K. acknowledges the German Research Foundation (DFG), grant KR3611/2-1. K.S.K., M.M.N. and T.B.v.D. acknowledge support from the Danish National Research Foundation and from DANSCATT. K.K. thanks the Volkswagen Foundation for support under the Peter Paul Ewald fellowship program (I/85832). G.V. acknowledges support from the European Research Council (ERC-StG-259709) and the Lendület Programme of the Hungarian Academy of Sciences. C.B., W.G. and A.G. thank the DFG (SFB925), as well as the European XFEL, for financial support.

Author information

Affiliations

  1. PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA

    • Wenkai Zhang
    • , Robert W. Hartsock
    • , Huiyang W. Liang
    • , Drew A. Meyer
    • , Carola Purser
    • , Zheng Sun
    •  & Kelly J. Gaffney
  2. LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

    • Roberto Alonso-Mori
    • , Uwe Bergmann
    • , Matthieu Chollet
    • , Henrik T. Lemke
    • , Joseph S. Robinson
    •  & Diling Zhu
  3. European XFEL, D-22761 Hamburg, Germany

    • Christian Bressler
    • , Andreas Galler
    •  & Wojciech Gawelda
  4. Department of Chemistry, Stanford University, Stanford, California 94305, USA

    • Ryan G. Hadt
    • , Robert W. Hartsock
    • , Thomas Kroll
    • , Huiyang W. Liang
    • , Drew A. Meyer
    •  & Edward I. Solomon
  5. Centre for Molecular Movies, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

    • Kasper S. Kjær
  6. Centre for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

    • Kasper S. Kjær
    • , Martin M. Nielsen
    •  & Tim B. van Driel
  7. Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany

    • Katharina Kubiček
  8. Deutsches Elektronen Synchrotron, Notkestraße 85, 22607 Hamburg, Germany

    • Katharina Kubiček
  9. SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

    • Edward I. Solomon
    • , Dimosthenis Sokaras
    •  & Tsu-Chien Weng
  10. Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, Hungary

    • György Vankó

Authors

  1. Search for Wenkai Zhang in:

  2. Search for Roberto Alonso-Mori in:

  3. Search for Uwe Bergmann in:

  4. Search for Christian Bressler in:

  5. Search for Matthieu Chollet in:

  6. Search for Andreas Galler in:

  7. Search for Wojciech Gawelda in:

  8. Search for Ryan G. Hadt in:

  9. Search for Robert W. Hartsock in:

  10. Search for Thomas Kroll in:

  11. Search for Kasper S. Kjær in:

  12. Search for Katharina Kubiček in:

  13. Search for Henrik T. Lemke in:

  14. Search for Huiyang W. Liang in:

  15. Search for Drew A. Meyer in:

  16. Search for Martin M. Nielsen in:

  17. Search for Carola Purser in:

  18. Search for Joseph S. Robinson in:

  19. Search for Edward I. Solomon in:

  20. Search for Zheng Sun in:

  21. Search for Dimosthenis Sokaras in:

  22. Search for Tim B. van Driel in:

  23. Search for György Vankó in:

  24. Search for Tsu-Chien Weng in:

  25. Search for Diling Zhu in:

  26. Search for Kelly J. Gaffney in:

Contributions

W.Z., R.A.-M., U.B., R.W.H., D.A.M., T.-C.W. and K.J.G. designed the experiment. W.Z., R.A.-M., U.B., M.C., R.W.H., K.S.K., K.K., H.T.L., H.W.L., C.P., J.S.R., Z.S., D.S., T.B.v.D., T.-C.W., D.Z. and K.J.G. did the experiment. W.Z., T.K., K.S.K., T.B.v.D., G.V. and T.-C.W. analysed the data. W.Z., R.A.-M., U.B., C.B., W.G., A.G., R.G.H., R.W.H., T.K., K.S.K., K.K., D.A.M., M.M.N., E.I.S., D.S. and K.J.G. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Kelly J. Gaffney.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13252

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.