Article | Published:

Sea-level and deep-sea-temperature variability over the past 5.3 million years

Nature volume 508, pages 477482 (24 April 2014) | Download Citation

  • A Corrigendum to this article was published on 18 June 2014

Abstract

Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ18O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0–1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geosci. 2, 500–504 (2009)

  2. 2.

    et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009)

  3. 3.

    et al. High tide of the warm Pliocene: implications of global sea level for Antarctic deglaciation. Geology 40, 407–410 (2012)

  4. 4.

    & The relationship between sea level and climate forcing by CO2 on geological timescales. Proc. Natl Acad. Sci. USA 110, 1209–1214 (2013)

  5. 5.

    , & Polar ocean stratification in a cold climate. Nature 428, 59–63 (2004)

  6. 6.

    , , , & High amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218 (2009)

  7. 7.

    & Absolute chronology for major Pleistocene advances of the Laurentide ice sheet. Geology 38, 795–798 (2010)

  8. 8.

    et al. An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quat. Sci. Rev. 75, 181–194 (2013)

  9. 9.

    et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002)

  10. 10.

    et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003)

  11. 11.

    et al. Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491, 744–747 (2012)

  12. 12.

    , , , & Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records. Ann. Glaciol. 51, 23–33 (2010)

  13. 13.

    et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005)

  14. 14.

    et al. Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition. Science 337, 704–709 (2012)

  15. 15.

    & Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325, 306–310 (2009)

  16. 16.

    & Comment on “Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions”. Science 328, 1480c (2010)

  17. 17.

    et al. Understanding the Red Sea response to sea level. Earth Planet. Sci. Lett. 225, 421–434 (2004)

  18. 18.

    Environmental controls on salinity and δ18O in the Mediterranean. Paleoceanography 14, 706–715 (1999)

  19. 19.

    et al. Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5. Mar. Micropaleontol. 50, 89–123 (2004)

  20. 20.

    et al. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11, 391–413 (1996)

  21. 21.

    , , & The sapropel record of the eastern Mediterranean Sea — results of Ocean Drilling Program Leg 160. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 371–395 (2000)

  22. 22.

    , & Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth Planet. Sci. Lett. 290, 319–330 (2010)

  23. 23.

    , & Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature 409, 1029–1033 (2001)

  24. 24.

    Quantitative assessment of glacial fluctuations in the level of Lake Lisan, Dead Sea rift. Quat. Sci. Rev. 70, 63–72 (2013)

  25. 25.

    Review and new aspects concerning the formation of Mediterranean sapropels. Mar. Geol. 122, 1–28 (1994)

  26. 26.

    Benthic foraminiferal successions across Late Quaternary Mediterranean sapropels. Mar. Geol. 153, 91–101 (1999)

  27. 27.

    , , & Review of recent advances in the interpretation of eastern Mediterranean sapropel S1 from geochemical evidence. Mar. Geol. 153, 77–89 (1999)

  28. 28.

    et al. High-resolution geochemical and micropalaeontological probing of the most recent eastern Mediterranean sapropel. Mar. Geol. 177, 25–44 (2001)

  29. 29.

    et al. Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel. Nature Geosci. 1, 606–610 (2008)

  30. 30.

    & Steady two-layer exchange through the Strait of Gibraltar. Deep Sea Res. I 38, S445–S463 (1991)

  31. 31.

    & Estimating past changes in the eastern Mediterranean freshwater budget, using reconstructions of sea level and hydrography. Proc. Kon. Ned. Akad. B 97, 201–217 (1994)

  32. 32.

    , & Modelling the paleo-circulation of the Mediterranean: the last glacial maximum and the Holocene with emphasis on the formation of sapropel S1. Paleoceanography 13, 586–606 (1998)

  33. 33.

    & A hydraulic box model study of the Mediterranean response to postglacial sea-level rise. Paleoceanography 18, 1084 (2003)

  34. 34.

    Modelling Mediterranean ocean climate of the Last Glacial Maximum. Clim. Past 7, 161–180 (2011)

  35. 35.

    , , & Vertical density gradient in the eastern North Atlantic during the last 30,000 years. Clim. Dyn. 39, 589–598 (2012)

  36. 36.

    & On the origin of the Strait of Gibraltar. Sedim. Geol. 188–189, 341–356 (2006)

  37. 37.

    & Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 480, 359–363 (2011)

  38. 38.

    et al. Contourite processes associated with the Mediterranean outflow water after its exit from the Strait of Gibraltar: global and conceptual implications. Geology 42, 227–230 (2014)

  39. 39.

    , , , & Departures from eustasy in Pliocene sea-level records. Nature Geosci. 4, 328–332 (2011)

  40. 40.

    et al. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth Planet. Sci. Lett. 291, 97–105 (2010)

  41. 41.

    , & Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, 1930–1932 (1996)

  42. 42.

    , & The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002)

  43. 43.

    & A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005)

  44. 44.

    & Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation. Nature 270, 216–219 (1977)

  45. 45.

    , & Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction. Earth Planet. Sci. Lett. 269, 585–595 (2008)

  46. 46.

    et al. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010)

  47. 47.

    , & The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010)

  48. 48.

    , , & Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010)

  49. 49.

    & Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13, 1–9 (1998)

  50. 50.

    et al. A low threshold for North Atlantic ice rafting from “low-slung slippery” late Pliocene ice sheets. Paleoceanography 25, PA1212 (2010)

  51. 51.

    et al. Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394, 162–165 (1998)

  52. 52.

    , & Relative sea level reduction at the Red Sea during the Last Glacial Maximum. Paleoceanography 23, PA1214 (2008)

  53. 53.

    , , , & High-resolution geochemical and micropalaeontological profiling of the most recent eastern Mediterranean sapropel. Mar. Geol. 177, 25–44 (2001)

  54. 54.

    et al. Aegean Sea as driver for hydrological and ecological changes in the eastern Mediterranean. Geology 35, 675–678 (2007)

  55. 55.

    et al. Early and middle Holocene in the Aegean Sea: interplay between high and low latitude climate variability. Quat. Sci. Rev. 28, 3246–3262 (2009)

  56. 56.

    , , , & Holocene atmosphere-ocean interactions: records from Greenland and the Aegean Sea. Clim. Dyn. 18, 587–593 (2002)

  57. 57.

    et al. A dynamic concept for eastern Mediterranean circulation and oxygenation during sapropel formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 190, 103–119 (2003)

  58. 58.

    et al. Circulation changes and nutrient concentrations in the Late Quaternary Aegean Sea: a non-steady state concept for sapropel formation. Paleoceanography 17, 10.1029/2000PA000601 (2002)

  59. 59.

    et al. A stratigraphically controlled multi-proxy chronostratigraphy for the eastern Mediterranean. Paleoceanography 22, PA4215 (2007)

  60. 60.

    , , & Eastern Mediterranean surface water Nd during Eemian sapropel S5: monitoring northerly (mid latitude) versus southerly (sub tropical) freshwater contributions. Quat. Sci. Rev. 29, 2473–2483 (2010)

  61. 61.

    , & On the timing and mechanism of millennial-scale climate variability during the last glacial cycle. Clim. Dyn. 20, 257–267 (2003)

  62. 62.

    et al. Oxygen isotope and sapropel stratigraphy in the eastern Mediterranean during the last 3.2 million years. Proc. ODP Sci. Res. 160, 181–189 (1998)

  63. 63.

    A simple two-layered model for shoaling of the eastern Mediterranean pycnocline due to glacio-eustatic sea-level lowering. Paleoceanography 6, 537–541 (1991)

  64. 64.

    Shoaling of the eastern Mediterranean pycnocline due to reduction of excess evaporation: implications for sapropel formation. Paleoceanography 6, 747–753 (1991b)

  65. 65.

    Mediterranean Sea surface warming 1985–2006. Clim. Res. 39, 11–17 (2009)

  66. 66.

    , , , & Glacial Mediterranean sea surface temperatures reconstructed from planktonic foraminiferal assemblages. Quat. Sci. Rev. 24, 999–1016 (2005)

  67. 67.

    , & On the seasonal response of intermediate and deep water to surface forcing in the Mediterranean Sea. Oceanol. Acta 12, 141–149 (1989)

  68. 68.

    Changing coastal oceanography of the Black Sea. I: Northwestern shelf. Prog. Oceanogr. 15, 217–276 (1985)

  69. 69.

    Choking the Mediterranean to dehydration: the Messinian Salinity Crisis. Geology 37, 167–170 (2009)

  70. 70.

    et al. Vegetation, sea-level, and climate changes during the Messinian salinity crisis. Geol. Soc. Am. Bull. 125, 432–444 (2013)

  71. 71.

    et al. Quantifying subsidence and isostatic readjustment using sedimentary paleomarkers, example from the Gulf of Lion. Earth Planet. Sci. Lett. 388, 353–366 (2014)

  72. 72.

    Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004)

  73. 73.

    , & On post-glacial sea level – II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005)

  74. 74.

    et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quat. Sci. Rev. 29, 160–169 (2010)

  75. 75.

    et al. Antarctic and Southern ocean influences on late Pliocene global cooling. Proc. Natl Acad. Sci. USA 109, 6423–6428 (2012)

  76. 76.

    , , , & Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004)

  77. 77.

    & Polar stratification: a critical view from the Southern Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 242, 240–252 (2006)

  78. 78.

    & Late Neogene history of deepwater ventilation in the Southern Ocean. Geochem. Geophys. Geosyst. 7, Q09001 (2006)

  79. 79.

    , & Millennial-scale ice rafting events and Hudson Strait Heinrich(-like) events during the late Pliocene and Pleistocene: a review. Quat. Sci. Rev. 80, 1–28 (2013)

  80. 80.

    , , & Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5-2.4 Ma) — ice-rafted detritus evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 213–223 (2002)

  81. 81.

    et al. The Plio-Pleistocene glaciation of the Barents Sea-Svalbard region: a new model based on revised chronostratigraphy. Quat. Sci. Rev. 28, 812–829 (2009)

  82. 82.

    et al. A new 6 Myr stratigraphic framework for the Atlantic–Arctic Gateway. Quat. Sci. Rev. (published online, 19 September 2013)

  83. 83.

    , , & Changes in current patterns in the Fram Strait at the Pliocene/Pleistocene boundary. Quat. Sci. Rev. (published online 3 August 2013)

  84. 84.

    et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012)

  85. 85.

    et al. Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the last glacial maximum. Earth Planet. Sci. Lett. 341–344, 222–233 (2012)

  86. 86.

    et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433, 821–825 (2005)

  87. 87.

    , , , & Subpolar link to the emergence of the modern equatorial Pacific cold tongue. Science 328, 1550–1553 (2010)

  88. 88.

    & Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea. Nature 349, 600–603 (1991)

  89. 89.

    & Stable isotopic and carbonate stratigraphy of the late Pliocene and Pleistocene of Hole 704A: eastern subantarctic South Atlantic. Proc. ODP Sci. Res. 114, 409–435 (1991)

  90. 90.

    et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984)

  91. 91.

    & History of ice rafting at Leg 114 sites, subantarctic/South Atlantic. Proc. ODP Sci. Res. 114, 599–607 (1991)

  92. 92.

    , , & Influence of brine formation on Arctic Ocean circulation over the past 15 million years. Nature Geosci. 1, 68–72 (2008)

  93. 93.

    , , & Deciphering late Cenozoic development of the western Svalbard margin from ODP site 986 results. Mar. Geol. 169, 373–390 (2000)

  94. 94.

    & Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation. Nature 270, 216–219 (1977)

  95. 95.

    , , , & Late Pliocene variation in Northern Hemisphere ice sheets and North Atlantic deep water circulation. Paleoceanography 4, 413–446 (1989)

  96. 96.

    , & Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994)

  97. 97.

    & Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676 (1998)

  98. 98.

    & Plio-Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 26, 56–69 (2007)

  99. 99.

    & Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography 20, PA4022 (2005)

Download references

Acknowledgements

We thank M. Raymo for discussion of Pliocene sea-level estimates at the PALSEA2 workshop in Rome, October 2013, and all colleagues who made their data available—for example, via the PANGAEA and NOAA-NCDC Palaeoclimate data centres, or directly. This study was supported by 2012 Australian Laureate Fellowship FL120100050 (E.J.R.) and UK Natural Environment Research Council (NERC) consortium project iGlass (E.J.R., M.T., F.W., A.P.R.). F.W. acknowledges an Australian Bicentennial Scholarship Award from the Menzies Centre for Australian Studies, King’s College London.

Author information

Affiliations

  1. Research School of Earth Sciences, The Australian National University, Canberra 0200, Australia

    • E. J. Rohling
    • , K. M. Grant
    • , G. Marino
    •  & A. P. Roberts
  2. Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK

    • E. J. Rohling
    • , G. L. Foster
    •  & F. Williams
  3. National Oceanography Centre, Joseph Proudman Building, Liverpool L3 5DA, UK

    • M. E. Tamisiea

Authors

  1. Search for E. J. Rohling in:

  2. Search for G. L. Foster in:

  3. Search for K. M. Grant in:

  4. Search for G. Marino in:

  5. Search for A. P. Roberts in:

  6. Search for M. E. Tamisiea in:

  7. Search for F. Williams in:

Contributions

E.J.R. led the study, and performed the calculations. F.W. contributed the assessment of isostatic effects under the guidance of M.T. All authors contributed specialist insights to the discussions and helped with composing and refining the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to E. J. Rohling.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Data and additional references.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13230

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.