Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sea-level and deep-sea-temperature variability over the past 5.3 million years

A Corrigendum to this article was published on 18 June 2014

Abstract

Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ18O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0–1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RSLGib compared with RSLBeM.
Figure 2: RSLGib for an eastern Mediterranean δ18Op stack, compared with other sea-level estimates.
Figure 3: Deep-sea temperature and δ18Ow components of deep-sea δ18Ob.
Figure 4: Expanded version of Fig. 3 for the past 1.5 Myr only.

Similar content being viewed by others

References

  1. Rohling, E. J. et al. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geosci. 2, 500–504 (2009)

    ADS  CAS  Google Scholar 

  2. Naish, T. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009)

    ADS  CAS  PubMed  Google Scholar 

  3. Miller, K. G. et al. High tide of the warm Pliocene: implications of global sea level for Antarctic deglaciation. Geology 40, 407–410 (2012)

    ADS  CAS  Google Scholar 

  4. Foster, G. L. & Rohling, E. J. The relationship between sea level and climate forcing by CO2 on geological timescales. Proc. Natl Acad. Sci. USA 110, 1209–1214 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sigman, D. M., Jaccard, S. & Haug, G. H. Polar ocean stratification in a cold climate. Nature 428, 59–63 (2004)

    ADS  CAS  PubMed  Google Scholar 

  6. Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218 (2009)

    ADS  Google Scholar 

  7. Balco, G. & Rovey, C. W., II Absolute chronology for major Pleistocene advances of the Laurentide ice sheet. Geology 38, 795–798 (2010)

    ADS  CAS  Google Scholar 

  8. Bailey, I. et al. An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quat. Sci. Rev. 75, 181–194 (2013)

    ADS  Google Scholar 

  9. Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002)

    ADS  Google Scholar 

  10. Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003)

    ADS  CAS  PubMed  Google Scholar 

  11. Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491, 744–747 (2012)

    ADS  CAS  PubMed  Google Scholar 

  12. de Boer, B., Van de Wal, R. S. W., Bintanja, R., Lourens, L. J. & Tuenter, E. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records. Ann. Glaciol. 51, 23–33 (2010)

    ADS  CAS  Google Scholar 

  13. Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005)

    ADS  CAS  PubMed  Google Scholar 

  14. Elderfield, H. et al. Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition. Science 337, 704–709 (2012)

    ADS  CAS  PubMed  Google Scholar 

  15. Sosdian, S. & Rosenthal, Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325, 306–310 (2009)

    ADS  CAS  PubMed  Google Scholar 

  16. Yu, J. & Broecker, W. S. Comment on “Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions”. Science 328, 1480c (2010)

    ADS  Google Scholar 

  17. Siddall, M. et al. Understanding the Red Sea response to sea level. Earth Planet. Sci. Lett. 225, 421–434 (2004)

    ADS  CAS  Google Scholar 

  18. Rohling, E. J. Environmental controls on salinity and δ18O in the Mediterranean. Paleoceanography 14, 706–715 (1999)

    ADS  Google Scholar 

  19. Rohling, E. J. et al. Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5. Mar. Micropaleontol. 50, 89–123 (2004)

    ADS  Google Scholar 

  20. Lourens, L. J. et al. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11, 391–413 (1996)

    ADS  Google Scholar 

  21. Emeis, K.-C., Sakamoto, T., Wehausen, R. & Brumsack, H.-J. The sapropel record of the eastern Mediterranean Sea — results of Ocean Drilling Program Leg 160. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 371–395 (2000)

    Google Scholar 

  22. Wang, P., Tian, J. & Lourens, L. J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth Planet. Sci. Lett. 290, 319–330 (2010)

    ADS  CAS  Google Scholar 

  23. Lourens, L. J., Wehausen, R. & Brumsack, H.-J. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature 409, 1029–1033 (2001)

    ADS  CAS  PubMed  Google Scholar 

  24. Rohling, E. J. Quantitative assessment of glacial fluctuations in the level of Lake Lisan, Dead Sea rift. Quat. Sci. Rev. 70, 63–72 (2013)

    ADS  Google Scholar 

  25. Rohling, E. J. Review and new aspects concerning the formation of Mediterranean sapropels. Mar. Geol. 122, 1–28 (1994)

    ADS  Google Scholar 

  26. Jorissen, F. J. Benthic foraminiferal successions across Late Quaternary Mediterranean sapropels. Mar. Geol. 153, 91–101 (1999)

    ADS  Google Scholar 

  27. Thomson, J., Mercone, D., De Lange, G. J. & Van Santvoort, P. J. M. Review of recent advances in the interpretation of eastern Mediterranean sapropel S1 from geochemical evidence. Mar. Geol. 153, 77–89 (1999)

    ADS  CAS  Google Scholar 

  28. Mercone, D. et al. High-resolution geochemical and micropalaeontological probing of the most recent eastern Mediterranean sapropel. Mar. Geol. 177, 25–44 (2001)

    ADS  CAS  Google Scholar 

  29. De Lange, G. J. et al. Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel. Nature Geosci. 1, 606–610 (2008)

    ADS  CAS  Google Scholar 

  30. Bryden, H. L. & Kinder, T. H. Steady two-layer exchange through the Strait of Gibraltar. Deep Sea Res. I 38, S445–S463 (1991)

    ADS  Google Scholar 

  31. Rohling, E. J. & Bryden, H. L. Estimating past changes in the eastern Mediterranean freshwater budget, using reconstructions of sea level and hydrography. Proc. Kon. Ned. Akad. B 97, 201–217 (1994)

    Google Scholar 

  32. Myers, P., Haines, K. & Rohling, E. J. Modelling the paleo-circulation of the Mediterranean: the last glacial maximum and the Holocene with emphasis on the formation of sapropel S1. Paleoceanography 13, 586–606 (1998)

    ADS  Google Scholar 

  33. Matthiesen, S. & Haines, K. A hydraulic box model study of the Mediterranean response to postglacial sea-level rise. Paleoceanography 18, 1084 (2003)

    ADS  Google Scholar 

  34. Mikolajewicz, U. Modelling Mediterranean ocean climate of the Last Glacial Maximum. Clim. Past 7, 161–180 (2011)

    Google Scholar 

  35. Rogerson, M., Bigg, G. R., Rohling, E. J. & Ramirez, J. Vertical density gradient in the eastern North Atlantic during the last 30,000 years. Clim. Dyn. 39, 589–598 (2012)

    Google Scholar 

  36. Loget, N. & Van der Driessche, J. On the origin of the Strait of Gibraltar. Sedim. Geol. 188–189, 341–356 (2006)

    ADS  Google Scholar 

  37. Garcia-Castellanos, D. & Villaseñor, A. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 480, 359–363 (2011)

    ADS  CAS  PubMed  Google Scholar 

  38. Hernández-Molina, F. J. et al. Contourite processes associated with the Mediterranean outflow water after its exit from the Strait of Gibraltar: global and conceptual implications. Geology 42, 227–230 (2014)

    ADS  Google Scholar 

  39. Raymo, M. E., Mitrovica, J. X., O’Leary, M. J., DeConto, R. M. & Hearty, P. J. Departures from eustasy in Pliocene sea-level records. Nature Geosci. 4, 328–332 (2011)

    ADS  CAS  Google Scholar 

  40. Rohling, E. J. et al. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth Planet. Sci. Lett. 291, 97–105 (2010)

    ADS  CAS  Google Scholar 

  41. Schrag, D. P., Hampt, G. & Murray, D. W. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, 1930–1932 (1996)

    ADS  CAS  PubMed  Google Scholar 

  42. Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002)

    ADS  CAS  PubMed  Google Scholar 

  43. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 http://dx.doi.org/10.1029/2004PA001071 (2005)

    ADS  Google Scholar 

  44. Shackleton, N. J. & Opdyke, N. D. Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation. Nature 270, 216–219 (1977)

    ADS  CAS  Google Scholar 

  45. Medina-Elizalde, M., Lea, D. W. & Fantle, M. S. Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction. Earth Planet. Sci. Lett. 269, 585–595 (2008)

    ADS  Google Scholar 

  46. Seki, O. et al. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010)

    ADS  CAS  Google Scholar 

  47. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010)

    ADS  CAS  PubMed  Google Scholar 

  48. Herbert, T. D., Cleaveland Peterson, L., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010)

    ADS  CAS  PubMed  Google Scholar 

  49. Clark, P. U. & Pollard, D. Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13, 1–9 (1998)

    ADS  Google Scholar 

  50. Bailey, I. et al. A low threshold for North Atlantic ice rafting from “low-slung slippery” late Pliocene ice sheets. Paleoceanography 25, PA1212 (2010)

    ADS  Google Scholar 

  51. Rohling, E. J. et al. Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394, 162–165 (1998)

    ADS  CAS  Google Scholar 

  52. Biton, E., Gildor, H. & Peltier, W. R. Relative sea level reduction at the Red Sea during the Last Glacial Maximum. Paleoceanography 23, PA1214 (2008)

    ADS  Google Scholar 

  53. Mercone, D., Thomson, J., Abu-Zied, R. H., Croudace, I. W. & Rohling, E. J. High-resolution geochemical and micropalaeontological profiling of the most recent eastern Mediterranean sapropel. Mar. Geol. 177, 25–44 (2001)

    ADS  CAS  Google Scholar 

  54. Marino, G. et al. Aegean Sea as driver for hydrological and ecological changes in the eastern Mediterranean. Geology 35, 675–678 (2007)

    ADS  CAS  Google Scholar 

  55. Marino, G. et al. Early and middle Holocene in the Aegean Sea: interplay between high and low latitude climate variability. Quat. Sci. Rev. 28, 3246–3262 (2009)

    ADS  Google Scholar 

  56. Rohling, E. J., Mayewski, P. A., Hayes, A., Abu-Zied, R. H. & Casford, J. S. L. Holocene atmosphere-ocean interactions: records from Greenland and the Aegean Sea. Clim. Dyn. 18, 587–593 (2002)

    Google Scholar 

  57. Casford, J. S. L. et al. A dynamic concept for eastern Mediterranean circulation and oxygenation during sapropel formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 190, 103–119 (2003)

    Google Scholar 

  58. Casford, J. S. L. et al. Circulation changes and nutrient concentrations in the Late Quaternary Aegean Sea: a non-steady state concept for sapropel formation. Paleoceanography 17, http://dx.doi.org/10.1029/2000PA000601 (2002)

    Google Scholar 

  59. Casford, J. S. L. et al. A stratigraphically controlled multi-proxy chronostratigraphy for the eastern Mediterranean. Paleoceanography 22, PA4215 (2007)

    ADS  Google Scholar 

  60. Osborne, A., Marino, G., Vance, D. & Rohling, E. J. Eastern Mediterranean surface water Nd during Eemian sapropel S5: monitoring northerly (mid latitude) versus southerly (sub tropical) freshwater contributions. Quat. Sci. Rev. 29, 2473–2483 (2010)

    ADS  Google Scholar 

  61. Rohling, E. J., Mayewski, P. A. & Challenor, P. On the timing and mechanism of millennial-scale climate variability during the last glacial cycle. Clim. Dyn. 20, 257–267 (2003)

    Google Scholar 

  62. Kroon, D. et al. Oxygen isotope and sapropel stratigraphy in the eastern Mediterranean during the last 3.2 million years. Proc. ODP Sci. Res. 160, 181–189 (1998)

    CAS  Google Scholar 

  63. Rohling, E. J. A simple two-layered model for shoaling of the eastern Mediterranean pycnocline due to glacio-eustatic sea-level lowering. Paleoceanography 6, 537–541 (1991)

    ADS  Google Scholar 

  64. Rohling, E. J. Shoaling of the eastern Mediterranean pycnocline due to reduction of excess evaporation: implications for sapropel formation. Paleoceanography 6, 747–753 (1991b)

    ADS  Google Scholar 

  65. Nykjaer, L. Mediterranean Sea surface warming 1985–2006. Clim. Res. 39, 11–17 (2009)

    Google Scholar 

  66. Hayes, A., Kucera, M., Kallel, N., Sbaffi, L. & Rohling, E. J. Glacial Mediterranean sea surface temperatures reconstructed from planktonic foraminiferal assemblages. Quat. Sci. Rev. 24, 999–1016 (2005)

    ADS  Google Scholar 

  67. Stanev, E. V., Friedrich, H. J. & Botev, S. V. On the seasonal response of intermediate and deep water to surface forcing in the Mediterranean Sea. Oceanol. Acta 12, 141–149 (1989)

    Google Scholar 

  68. Tolmazin, D. Changing coastal oceanography of the Black Sea. I: Northwestern shelf. Prog. Oceanogr. 15, 217–276 (1985)

    ADS  Google Scholar 

  69. Govers, R. Choking the Mediterranean to dehydration: the Messinian Salinity Crisis. Geology 37, 167–170 (2009)

    ADS  Google Scholar 

  70. Jiménez-Moreno, G. et al. Vegetation, sea-level, and climate changes during the Messinian salinity crisis. Geol. Soc. Am. Bull. 125, 432–444 (2013)

    ADS  Google Scholar 

  71. Rabineau, M. et al. Quantifying subsidence and isostatic readjustment using sedimentary paleomarkers, example from the Gulf of Lion. Earth Planet. Sci. Lett. 388, 353–366 (2014)

    ADS  CAS  Google Scholar 

  72. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004)

    ADS  CAS  Google Scholar 

  73. Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level – II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005)

    ADS  Google Scholar 

  74. Elderfield, H. et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quat. Sci. Rev. 29, 160–169 (2010)

    ADS  Google Scholar 

  75. McKay, R. et al. Antarctic and Southern ocean influences on late Pliocene global cooling. Proc. Natl Acad. Sci. USA 109, 6423–6428 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ravelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004)

    ADS  CAS  PubMed  Google Scholar 

  77. Hillenbrand, C.-D. & Cortese, G. Polar stratification: a critical view from the Southern Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 242, 240–252 (2006)

    Google Scholar 

  78. Hodell, D. A. & Venz-Curtis, K. A. Late Neogene history of deepwater ventilation in the Southern Ocean. Geochem. Geophys. Geosyst. 7, Q09001 (2006)

    ADS  Google Scholar 

  79. Naafs, B. D. A., Hefter, J. & Stein, R. Millennial-scale ice rafting events and Hudson Strait Heinrich(-like) events during the late Pliocene and Pleistocene: a review. Quat. Sci. Rev. 80, 1–28 (2013)

    ADS  Google Scholar 

  80. Kleiven, H. F., Jansen, E., Fronval, T. & Smith, T. M. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5-2.4 Ma) — ice-rafted detritus evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 213–223 (2002)

    Google Scholar 

  81. Knies, J. et al. The Plio-Pleistocene glaciation of the Barents Sea-Svalbard region: a new model based on revised chronostratigraphy. Quat. Sci. Rev. 28, 812–829 (2009)

    ADS  Google Scholar 

  82. Mattingsdal, R. et al. A new 6 Myr stratigraphic framework for the Atlantic–Arctic Gateway. Quat. Sci. Rev. http://dx.doi.org/10.1016/j.quascirev.2013.08.022 (published online, 19 September 2013)

  83. Gebhardt, A. C., Geissler, W. H., Matthiessen, J. & Jokat, W. Changes in current patterns in the Fram Strait at the Pliocene/Pleistocene boundary. Quat. Sci. Rev. http://dx.doi.org/10.1016/j.quascirev.2013.07.015 (published online 3 August 2013)

  84. Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012)

    ADS  Google Scholar 

  85. Bailey, I. et al. Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the last glacial maximum. Earth Planet. Sci. Lett. 341–344, 222–233 (2012)

    ADS  Google Scholar 

  86. Haug, G. H. et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433, 821–825 (2005)

    ADS  CAS  PubMed  Google Scholar 

  87. Martínez-Garcia, A., Rosell-Mele, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar link to the emergence of the modern equatorial Pacific cold tongue. Science 328, 1550–1553 (2010)

    ADS  PubMed  Google Scholar 

  88. Jansen, E. & Sjøholm, J. Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea. Nature 349, 600–603 (1991)

    ADS  Google Scholar 

  89. Hodell, D. A. & Ciesielski, P. F. Stable isotopic and carbonate stratigraphy of the late Pliocene and Pleistocene of Hole 704A: eastern subantarctic South Atlantic. Proc. ODP Sci. Res. 114, 409–435 (1991)

    Google Scholar 

  90. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984)

    ADS  CAS  Google Scholar 

  91. Allen, C. P. & Warnke, D. A. History of ice rafting at Leg 114 sites, subantarctic/South Atlantic. Proc. ODP Sci. Res. 114, 599–607 (1991)

    Google Scholar 

  92. Haley, B. A., Frank, M., Spielhagen, R. F. & Eisenhauer, A. Influence of brine formation on Arctic Ocean circulation over the past 15 million years. Nature Geosci. 1, 68–72 (2008)

    ADS  CAS  Google Scholar 

  93. Butt, F. A., Elverhoi, A., Solheim, A. & Forsberg, C. F. Deciphering late Cenozoic development of the western Svalbard margin from ODP site 986 results. Mar. Geol. 169, 373–390 (2000)

    ADS  CAS  Google Scholar 

  94. Shackleton, N. J. & Opdyke, N. D. Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation. Nature 270, 216–219 (1977)

    ADS  CAS  Google Scholar 

  95. Raymo, M. E., Ruddiman, W. F., Backman, J., Clement, B. M. & Martinson, D. G. Late Pliocene variation in Northern Hemisphere ice sheets and North Atlantic deep water circulation. Paleoceanography 4, 413–446 (1989)

    ADS  Google Scholar 

  96. Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994)

    ADS  Google Scholar 

  97. Haug, G. H. & Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676 (1998)

    ADS  CAS  Google Scholar 

  98. Lisiecki, L. E. & Raymo, M. E. Plio-Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 26, 56–69 (2007)

    ADS  Google Scholar 

  99. Mudelsee, M. & Raymo, M. E. Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography 20, PA4022 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Raymo for discussion of Pliocene sea-level estimates at the PALSEA2 workshop in Rome, October 2013, and all colleagues who made their data available—for example, via the PANGAEA and NOAA-NCDC Palaeoclimate data centres, or directly. This study was supported by 2012 Australian Laureate Fellowship FL120100050 (E.J.R.) and UK Natural Environment Research Council (NERC) consortium project iGlass (E.J.R., M.T., F.W., A.P.R.). F.W. acknowledges an Australian Bicentennial Scholarship Award from the Menzies Centre for Australian Studies, King’s College London.

Author information

Authors and Affiliations

Authors

Contributions

E.J.R. led the study, and performed the calculations. F.W. contributed the assessment of isostatic effects under the guidance of M.T. All authors contributed specialist insights to the discussions and helped with composing and refining the manuscript.

Corresponding author

Correspondence to E. J. Rohling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Summary of our sapropel detection method.

A mean-normalized version of the eastern Mediterranean δ18O stack22 after linear detrending (black; left-hand y axis) is shown along with preliminary core-scanner XRF Ba/Al data for ODP Site 967 (orange; right-hand y axis). Also shown are eastern Mediterranean sapropel intervals according to the chronology of Kroon et al.62 (vertical blue bars), and according to Emeis et al.21 (vertical green dashes). Note that minor chronological differences may exist relative to Wang et al.22, and that previous sapropel recognition21,62 was mainly done on the basis of colour. Also shown are the eccentricity-related component in the Mediterranean δ18O stack based on two rectangular bandpass filters for periods of 80–130 kyr and 360–440 kyr (dark blue), and our upcrossing cut-off criterion based on the eccentricity-related component plus 3 standard deviations of short-term (sub-10-kyr) variability (red). The yellow bars indicate three sapropel(-like) intervals that were not detected with this method, but which are apparent compared to other methods (main text).

Extended Data Figure 2 δ18O-to-RSL ‘converters’ calculated in the present study.

a, For G. ruber (white). b, For N. pachyderma (dextral). Data are shown with polynomial fits for: the mean (red), 68% probability limits (blue) and 95% probability limits (green). Equations (below) for the polynomial fits are those used to establish RSLGib changes from eastern Mediterranean δ18O changes. For G. ruber (white), the fit equations are (from top/right to bottom/left): y = 18.23253367 − 54.32756406x + 2.68013962x2, y = 9.359718967 − 53.88724018x + 2.336521849x2, y = –54.33006067x + 2.144129497x2, y = –9.721121814 – 54.4447188x + 1.639979972x2, and y = –19.83859107 − 54.97329064x + 1.027303677x2. For N. pachyderma (dextral), the fit equations are (from top/right to bottom/left): y = 20.27152514 − 61.45134479x + 3.673345939x2, y = 10.65608987 − 61.68573435x + 3.521130244x2, y = –61.74158411x + 3.12127659x2, y = –11.37304383 − 61.90236624x + 2.499068186x2, and y = –22.84772173 − 63.3490518x + 2.014759373x2.

Extended Data Figure 3 Preliminary isostatic assessment results for the Camarinal sill, the critical location of water-exchange control for the Strait of Gibraltar.

a, Over the past 150 kyr. b, Magnified for the past 40 kyr. Orange is the range of modelled RSL, blue is the range of associated global mean (eustatic) sea levels (ESL). The graph illustrates that RSLGib is—to a first approximation over the long timescales considered in the present study—related to ESL through a ratio that is relatively constant over the range of sea levels considered (see also Extended Data Fig. 4 and Methods).

Extended Data Figure 4 Global mean ESL versus RSLGib over the full range of 495 Earth model configurations considered.

This reveals that, to a first approximation, ESL = 1.23 RSLGib, with a 95% probability interval on the slope value between 1.15 and 1.31.

Extended Data Table 1 Tie-points between the Lisiecki and Raymo and Wang et al. chronologies
Extended Data Table 2 Other evidence of late Pliocene climate change

Supplementary information

Supplementary Information

This file contains Supplementary Data and additional references. (PDF 500 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohling, E., Foster, G., Grant, K. et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508, 477–482 (2014). https://doi.org/10.1038/nature13230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13230

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing