Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity

Abstract

In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes1. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity2. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor3,4. Nicotinamide is a precursor of NAD+, an important cofactor linking cellular redox states with energy metabolism5. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation6. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine–spermine N1-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism7,8. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD+ levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD+-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: NNMT expression is increased in WAT and liver of obese and insulin-resistant mice.
Figure 2: Nnmt knockdown prevents diet-induced obesity and insulin resistance.
Figure 3: NNMT regulates energy expenditure.
Figure 4: NNMT regulates SAM and NAD+ pathways in adipose tissue.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The microarray data from adipose tissue of adipose-specific knockout and adipose-specific overexpression have been published by our laboratory and are available in NCBI Gene Expression Omnibus under accession number GSE35378.

References

  1. Shepherd, P. R. & Kahn, B. B. Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 341, 248–257 (1999)

    CAS  PubMed  Google Scholar 

  2. Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005)

    ADS  CAS  PubMed  Google Scholar 

  3. Aksoy, S., Szumlanski, C. L. & Weinshilboum, R. M. Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. J. Biol. Chem. 269, 14835–14840 (1994)

    CAS  PubMed  Google Scholar 

  4. Riederer, M., Erwa, W., Zimmermann, R., Frank, S. & Zechner, R. Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. Atherosclerosis 204, 412–417 (2009)

    CAS  PubMed  Google Scholar 

  5. Houtkooper, R. H., Canto, C., Wanders, R. J. & Auwerx, J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194–223 (2010)

    CAS  PubMed  Google Scholar 

  6. Teperino, R., Schoonjans, K. & Auwerx, J. Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab. 12, 321–327 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jell, J. et al. Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J. Biol. Chem. 282, 8404–8413 (2007)

    CAS  PubMed  Google Scholar 

  8. Pirinen, E. et al. Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol. Cell. Biol. 27, 4953–4967 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sartini, D. et al. Nicotinamide N-methyltransferase in non-small cell lung cancer: promising results for targeted anti-cancer therapy. Cell Biochem. Biophys. 67, 865–873 (2013)

    CAS  PubMed  Google Scholar 

  10. Ulanovskaya, O. A., Zuhl, A. M. & Cravatt, B. F. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nature Chem. Biol. 9, 300–306 (2013)

    CAS  Google Scholar 

  11. Williams, A. C., Cartwright, L. S. & Ramsden, D. B. Parkinson's disease: the first common neurological disease due to auto-intoxication? QJM 98, 215–226 (2005)

    CAS  PubMed  Google Scholar 

  12. Lee, Y. H. et al. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia 48, 1776–1783 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Salek, R. M. et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genomics 29, 99–108 (2007)

    ADS  CAS  PubMed  Google Scholar 

  14. Yaguchi, H., Togawa, K., Moritani, M. & Itakura, M. Identification of candidate genes in the type 2 diabetes modifier locus using expression QTL. Genomics 85, 591–599 (2005)

    CAS  PubMed  Google Scholar 

  15. Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009)

    PubMed  PubMed Central  Google Scholar 

  16. Alexander, J., Chang, G. Q., Dourmashkin, J. T. & Leibowitz, S. F. Distinct phenotypes of obesity-prone AKR/J, DBA2J and C57BL/6J mice compared to control strains. Int. J. Obes. (Lond.) 30, 50–59 (2006)

    CAS  Google Scholar 

  17. Svenson, K. L. et al. Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations. J. Appl. Physiol. 102, 2369–2378 (2007)

    CAS  PubMed  Google Scholar 

  18. Grubb, S. C., Maddatu, T. P., Bult, C. J. & Bogue, M. A. Mouse phenome database. Nucleic Acids Res. 37, D720–D730 (2009)

    CAS  PubMed  Google Scholar 

  19. Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010)

    CAS  PubMed  Google Scholar 

  20. Erion, D. M. et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc. Natl Acad. Sci. USA 106, 11288–11293 (2009)

    ADS  CAS  PubMed  Google Scholar 

  21. Kang-Lee, Y. A. et al. Metabolic effects of nicotinamide administration in rats. J. Nutr. 113, 215–221 (1983)

    CAS  PubMed  Google Scholar 

  22. Varela-Rey, M. et al. Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide. Hepatology 52, 105–114 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pegg, A. E. & Casero, R. A., Jr Current status of the polyamine research field. Methods Mol. Biol. 720, 3–35 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Koponen, T. et al. The activation of hepatic and muscle polyamine catabolism improves glucose homeostasis. Amino Acids 42, 427–440 (2011)

    PubMed  Google Scholar 

  25. Alcendor, R. R. et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 100, 1512–1521 (2007)

    CAS  PubMed  Google Scholar 

  26. Finley, L. W. et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS ONE 6, e23295 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi, Y. et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int. J. Mol. Med. 16, 237–243 (2005)

    CAS  PubMed  Google Scholar 

  28. Stein, S. et al. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur. Heart J. 31, 2301–2309 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005)

    ADS  CAS  PubMed  Google Scholar 

  30. Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013)

    ADS  PubMed  Google Scholar 

  31. Abel, E. D. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001)

    ADS  CAS  PubMed  Google Scholar 

  32. Shepherd, P. R. et al. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. Biol. Chem. 268, 22243–22246 (1993)

    CAS  PubMed  Google Scholar 

  33. Bubolz, A. H. et al. Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca2+ entry and mitochondrial ROS signaling. Am. J. Physiol. Heart Circ. Physiol. 302, H634–H642 (2012)

    CAS  PubMed  Google Scholar 

  34. Yan, L., Otterness, D. M., Craddock, T. L. & Weinshilboum, R. M. Mouse liver nicotinamide N-methyltransferase: cDNA cloning, expression, and nucleotide sequence polymorphisms. Biochem. Pharmacol. 54, 1139–1149 (1997)

    CAS  PubMed  Google Scholar 

  35. Chen, H. C. & Farese, R. V., Jr Determination of adipocyte size by computer image analysis. J. Lipid Res. 43, 986–989 (2002)

    CAS  PubMed  Google Scholar 

  36. Bence, K. K. et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nature Med. 12, 917–924 (2006)

    CAS  PubMed  Google Scholar 

  37. Bernacki, R. J. et al. Preclinical antitumor efficacy of the polyamine analogue N1, N11-diethylnorspermine administered by multiple injection or continuous infusion. Clin. Cancer Res. 1, 847–857 (1995)

    CAS  PubMed  Google Scholar 

  38. Jänne, J. & Williams-Ashman, H. G. On the purification of l-ornithine decarboxylase from rat prostate and effects of thiol compounds on the enzyme. J. Biol. Chem. 246, 1725–1732 (1971)

    PubMed  Google Scholar 

  39. Yang, X. et al. Using tandem mass spectrometry in targeted mode to identify activators of class IA PI3K in cancer. Cancer Res. 71, 5965–5975 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan, Q. W. et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56, 2533–2540 (2007)

    CAS  Google Scholar 

  41. Eguchi, J. et al. Interferon regulatory factors are transcriptional regulators of adipogenesis. Cell Metab. 7, 86–94 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pulinilkunnil, T. et al. Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J. Biol. Chem. 286, 8798–8809 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Endo, A., Nagatani, F., Hamada, C. & Yoshimura, I. Minimization method for balancing continuous prognostic variables between treatment and control groups using Kullback–Leibler divergence. Contemp. Clin. Trials 27, 420–431 (2006)

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Weinshilboum for NNMT antibody; P. Woster for DFMO; M. Yuan for tandem mass spectrometry; A. Karppinen, A. Korhonen, T. Reponen, A. Uimari, S. Pirnes-Karhu and T. Koponen for measurements of ODC and SSAT activity; C. Semenkovich and S. Fried for protocols for FAS activity measurements; and P. Aryal for assistance with real-time qPCR. D.Kr. is supported by the Deutsche Forschungsgemeinschaft (KR 3475/1-1) and American Heart Association (AHA) (09POST2250499); Q.Y. is a Klarman Scholar at the Beth Israel Deaconess Medical Center. This work is supported by grants from the NIH (R37 DK43051, P30 DK57521) and a grant from the JPB foundation to B.B.K.; grants from the NIH (KO8 DK090149, R01 DK100385, BNORC P30 DK046200 and NORCH P30 DK040561) to Q.Y.; grant RO1 DK69966 to P.P.; P01CA120964 and P30CA006516-46 to J.M.A.; AHA 13SDG14620005 and P&F P30 DK0460200 to D.K.; the Ellison Medical Foundation New Scholar in Aging Award to A.A.S.; and academy of Finland grant 118590 to L.A.

Author information

Authors and Affiliations

Authors

Contributions

Q.Y. discovered NNMT from the initial microarray analysis. D.Kr., Q.Y. and B.B.K designed the experiments, interpreted the data and wrote the paper. D.Ko. performed oxygen consumption experiments in adipocytes. A.S.B. performed CLAMS studies. L.Z., T.C.P., F.G., YC.W. and O.D.P. provided assistance with cell culture and animal experiments. O.D.P. also performed the microarray studies. J.T.R. and P.P. performed PGC-1α acetylation experiments. E.P. and L.A. provided expertise on polyamines and measured ODC and SSAT activity. Y.C. and A.A.S. measured nicotinamide and metabolites. J.M.A. performed metabolomics studies. B.P.M and S.B. provided Nnmt and control ASOs.

Corresponding authors

Correspondence to Qin Yang or Barbara B. Kahn.

Ethics declarations

Competing interests

B.B.K., Q.Y. and D. Kr. are inventors on a patent application related to NNMT. B.P.M. and S.B. are employees of Isis Pharmaceuticals Inc.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-21. (PDF 771 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kraus, D., Yang, Q., Kong, D. et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258–262 (2014). https://doi.org/10.1038/nature13198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13198

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing