Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular photons interfaced with alkali atoms


Future quantum communication will rely on the integration of single-photon sources, quantum memories and systems with strong single-photon nonlinearities1. Two key parameters are crucial for the single-photon source: a high photon flux with a very small bandwidth, and a spectral match to other components of the system. Atoms or ions may act as single-photon sources—owing to their narrowband emission and their intrinsic spectral match to other atomic systems—and can serve as quantum nonlinear elements. Unfortunately, their emission rates are still limited, even for highly efficient cavity designs2. Single solid-state emitters such as single organic dye molecules are significantly brighter3 and allow for narrowband photons4; they have shown potential in a variety of quantum optical experiments5,6 but have yet to be interfaced with other components such as stationary memory qubits. Here we describe the optical interaction between Fourier-limited photons from a single organic molecule and atomic alkali vapours, which can constitute an efficient quantum memory. Single-photon emission rates reach up to several hundred thousand counts per second and show a high spectral brightness of 30,000 detectable photons per second per megahertz of bandwidth. The molecular emission is robust and we demonstrate perfect tuning to the spectral transitions of the sodium D line and efficient filtering, even for emitters at ambient conditions. In addition, we achieve storage of molecular photons originating from a single dibenzanthanthrene molecule in atomic sodium vapour. Given the large set of molecular emission lines matching to atomic transitions, our results enable the combination of almost ideal single-photon sources with various atomic vapours, such that experiments with giant single-photon nonlinearities, mediated, for example, by Rydberg atoms7,8, become feasible.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral match of DBATT to atomic sodium.
Figure 2: Spectroscopy and microscopy of molecules and atoms.
Figure 3: Narrow-band filtering of the molecular emission by atomic vapour.
Figure 4: Near-sodium-resonance photons.


  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Nisbet-Jones, P. B. R., Dilley, J., Ljunggren, D. & Kuhn, A. Highly efficient source for indistinguishable single photons of controlled shape. New J. Phys. 13, 103036 (2011)

    Article  ADS  Google Scholar 

  3. Lee, K. et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nature Photon. 5, 166–169 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Hettich, C. et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385–389 (2002)

    Article  CAS  Google Scholar 

  6. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012)

    Article  ADS  CAS  Google Scholar 

  8. Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013)

    Article  ADS  CAS  Google Scholar 

  9. Boiron, A.-M., Lounis, B. & Orrit, M. Single molecules of dibenzanthanthrene in n-hexadecane. J. Chem. Phys. 105, 3969–3974 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Lettow, R. et al. Realization of two Fourier-limited solid-state single-photon sources. Opt. Express 15, 15842–15847 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Petelski, T., Fattori, M., Lamporesi, G., Stuhler, J. & Tino, G. Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking. Eur. Phys. J. D 22, 279–283 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Wild, U. P., Güttler, F., Pirotta, M. & Renn, A. Single molecule spectroscopy: Stark effect of pentacene in p-terphenyl. Chem. Phys. Lett. 193, 451–455 (1992)

    Article  ADS  CAS  Google Scholar 

  13. Orrit, M., Bernard, J., Zumbusch, A. & Personov, R. Stark effect on single molecules in a polymer matrix. Chem. Phys. Lett. 196, 595–600 (1992)

    Article  ADS  CAS  Google Scholar 

  14. Nicolet, A. A. L., Hofmann, C., Kol'chenko, M. A., Kozankiewicz, B. & Orrit, M. Single dibenzoterrylene molecules in an anthracene crystal: spectroscopy and photophysics. ChemPhysChem 8, 1215–1220 (2007)

    Article  CAS  Google Scholar 

  15. Pirotta, M., Renn, A., Werts, M. H. & Wild, U. P. Single molecule spectroscopy. Perylene in the Shpol'skiĭ matrix n-nonane. Chem. Phys. Lett. 250, 576–582 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Nonn, T. & Plakhotnik, T. Fluorescence excitation spectroscopy of vibronic transitions in single molecules. Chem. Phys. Lett. 336, 97–104 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Kiraz, A., Ehrl, M., Bräuchle, C. & Zumbusch, A. Low temperature single molecule spectroscopy using vibronic excitation and dispersed fluorescence detection. J. Chem. Phys. 118, 10821–10824 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Dick, D. J. & Shay, T. M. Ultrahigh-noise rejection optical filter. Opt. Lett. 16, 867–869 (1991)

    Article  ADS  CAS  Google Scholar 

  19. Harrell, S. D. et al. Sodium and potassium vapor Faraday filters revisited: theory and applications. J. Opt. Soc. Am. B 26, 659–670 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Akopian, N., Wang, L., Rastelli, A., Schmidt, O. G. & Zwiller, V. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nature Photon. 5, 230–233 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Tey, M. K. et al. Strong interaction between light and a single trapped atom without the need for a cavity. Nature Phys. 4, 924–927 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Pritchard, J. D. et al. Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Parigi, V. et al. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms. Phys. Rev. Lett. 109, 233602 (2012)

    Article  ADS  Google Scholar 

  24. Gerhardt, I. et al. Coherent state preparation and observation of Rabi oscillations in a single molecule. Phys. Rev. A 79, 011402 (2009)

    Article  ADS  Google Scholar 

  25. Peloso, M. P., Gerhardt, I., Ho, C., Lamas-Linares, A. & Kurtsiefer, C. Daylight operation of a free space, entanglement-based quantum key distribution system. New J. Phys. 11, 045007 (2009)

    Article  ADS  Google Scholar 

  26. Mais, S., Basche, T., Mueller, G., Müllen, K. & Bräuchle, C. Probing the spectral dynamics of single terrylenediimide molecules in low-temperature solids. Chem. Phys. 247, 41–52 (1999)

    Article  CAS  Google Scholar 

  27. Kiraz, A., Ehrl, M., Bräuchle, C. & Zumbusch, A. Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules. Appl. Phys. Lett. 85, 920–922 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Jelezko, F., Tamarat, P., Lounis, B. & Orrit, M. Dibenzoterrylene in naphthalene: a new crystalline system for single molecule spectroscopy in the near infrared. J. Phys. Chem. 100, 13892–13894 (1996)

    Article  CAS  Google Scholar 

  29. Kummer, S., Basche, T. & Bräuchle, C. Terrylene in p-terphenyl: a novel single crystalline system for single molecule spectroscopy at low temperatures. Chem. Phys. Lett. 229, 309–316 (1994)

    Article  ADS  CAS  Google Scholar 

  30. Kummer, S. et al. Absorption, excitation, and emission spectroscopy of terrylene in p-terphenyl: bulk measurements and single molecule studies. J. Chem. Phys. 107, 7673–7684 (1997)

    Article  ADS  CAS  Google Scholar 

  31. Kitson, S. C., Jonsson, P., Rarity, J. G. & Tapster, P. R. Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity. Phys. Rev. A 58, 620–627 (1998)

    Article  ADS  CAS  Google Scholar 

  32. Boyd, R. W. & Gauthier, D. J. in Progress in Optics Vol. 43, Ch. 6, 497–530 (Elsevier, 2002)

    Google Scholar 

  33. Shi, Z., Boyd, R. W., Camacho, R. M., Vudyasetu, P. K. & Howell, J. C. Slow-light Fourier transform interferometer. Phys. Rev. Lett. 99, 240801 (2007)

    Article  ADS  Google Scholar 

Download references


We thank W. Kiefer for the calculation of the sodium-2-FADOF transmission (Fig. 3). G.S. acknowledges support by J. Pflaum (University of Würzburg). I.G. acknowledges discussions with R. Löw and S. Hofferberth (University of Stuttgart). J.W. acknowledges support by the Max Planck Society (via a Max Planck fellowship), the BMBF (via the projects QuORep and and the EU (via the project SIQS and the ERC grant SQUTEC).

Author information

Authors and Affiliations



I.G. conceived the idea. P.S., G.S. and I.G. prepared and conducted the experiments. I.G. and J.W. supervised the team and wrote the manuscript.

Corresponding author

Correspondence to Ilja Gerhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Imaging fluorescent samples, supported by atomic vapour.

Single fluorescent bead, imaged in a confocal microscope, illuminated with laser light, locked to the crossover resonance of the sodium D2 transition. Although the overall count rate does not substantially differ, the signal-to-noise ratio is measured to be 210 when using the commercial filter, and 240 when only the sodium filter is used. Integration time per pixel is 2 ms.

Extended Data Figure 2 Combined spectroscopy of DBT and potassium.

Spectra of single DBT molecules and atomic K vapour on the K D2 line around 766 nm. The molecules in the sample are sparse. Therefore, the image represents multiple recordings at several lateral positions.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siyushev, P., Stein, G., Wrachtrup, J. et al. Molecular photons interfaced with alkali atoms. Nature 509, 66–70 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing