Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanophotonic quantum phase switch with a single atom

Abstract

By analogy to transistors in classical electronic circuits, quantum optical switches are important elements of quantum circuits and quantum networks1,2,3. Operated at the fundamental limit where a single quantum of light or matter controls another field or material system4, such a switch may enable applications such as long-distance quantum communication5, distributed quantum information processing2 and metrology6, and the exploration of novel quantum states of matter7. Here, by strongly coupling a photon to a single atom trapped in the near field of a nanoscale photonic crystal cavity, we realize a system in which a single atom switches the phase of a photon and a single photon modifies the atom’s phase. We experimentally demonstrate an atom-induced optical phase shift8 that is nonlinear at the two-photon level9, a photon number router that separates individual photons and photon pairs into different output modes10, and a single-photon switch in which a single ‘gate’ photon controls the propagation of a subsequent probe field11,12. These techniques pave the way to integrated quantum nanophotonic networks involving multiple atomic nodes connected by guided light.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Strong coupling of a trapped atom to a photonic crystal cavity.
Figure 2: Photon phase shift produced by a single atom.
Figure 3: Quantum nonlinear optics with the atom/photonic-crystal system.
Figure 4: Realization of the quantum phase switch.

References

  1. 1

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Duan, L.-M. & Monroe, C. Quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010)

    ADS  Article  Google Scholar 

  4. 4

    Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006)

    Book  Google Scholar 

  5. 5

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Kómár, P. et al. A quantum network of clocks. Preprint at http://arxiv.org/abs/1310.6045 (2013)

  7. 7

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)

    ADS  Article  Google Scholar 

  8. 8

    Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    ADS  Article  Google Scholar 

  9. 9

    Schuster, I. et al. Nonlinear spectroscopy of photons bound to one atom. Nature Phys. 4, 382–385 (2008)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Aoki, T. et al. Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)

    ADS  Article  Google Scholar 

  11. 11

    Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013)

    CAS  ADS  Article  Google Scholar 

  13. 13

    O’Shea, D., Junge, C., Volz, J. & Rauschenbeutel, A. Fiber-optical switch controlled by a single atom. Phys. Rev. Lett. 111, 193601 (2013)

    ADS  Article  Google Scholar 

  14. 14

    Volz, T. et al. Ultrafast all-optical switching by single photons. Nature Photon. 6, 605–609 (2012)

    ADS  Article  Google Scholar 

  15. 15

    Kim, H., Bose, R., Shen, T. C., Solomon, G. S. & Waks, E. A quantum logic gate between a solid-state quantum bit and a photon. Nature Photon. 7, 373–377 (2013)

    ADS  Article  Google Scholar 

  16. 16

    Chang, D. E., Sorensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008)

    ADS  Article  Google Scholar 

  20. 20

    Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  21. 21

    Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Waks, E. & Vuckovic, J. Dispersive properties and large Kerr nonlinearities using dipole-induced transparency in a single-sided cavity. Phys. Rev. A 73, 041803 (2006)

    ADS  Article  Google Scholar 

  27. 27

    Witthaut, D., Lukin, M. D. & Sörensen, A. S. Photon sorters and QND detectors using single photon emitters. Europhys. Lett. 97, 50007 (2012)

    ADS  Article  Google Scholar 

  28. 28

    Volz, J., Gehr, R., Dubois, G., Esteve, J. & Reichel, J. Measurement of the internal state of a single atom without energy exchange. Nature 475, 210–213 (2011)

    CAS  Article  Google Scholar 

  29. 29

    Wang, B. & Duan, L.-M. Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction. Phys. Rev. A 72, 022320 (2005)

    ADS  Article  Google Scholar 

  30. 30

    Thompson, J. D., Tiecke, T. G., Zibrov, A. S., Vuletić, V. & Lukin, M. D. Coherence and Raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett. 110, 133001 (2013)

    CAS  ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Peyronel, A. Kubanek, A. Zibrov for discussions and experimental assistance. Financial support was provided by the US NSF, the Center for Ultracold Atoms, the Natural Sciences and Engineering Research Council of Canada, the Air Force Office of Scientific Research Multidisciplinary University Research Initiative and the Packard Foundation. J.D.T. acknowledges support from the Fannie and John Hertz Foundation and the NSF Graduate Research Fellowship Program. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network, which is supported by the NSF under award no. ECS-0335765. The CNS is part of Harvard University.

Author information

Affiliations

Authors

Contributions

The experiments and analysis were carried out by T.G.T., J.D.T., N.P.d.L. and L.R.L. All work was supervised by V.V. and M.D.L. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to V. Vuletić or M. D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-6 and Supplementary References. (PDF 589 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tiecke, T., Thompson, J., de Leon, N. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014). https://doi.org/10.1038/nature13188

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links