Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The present and future role of microfluidics in biomedical research

Abstract

Microfluidics, a technology characterized by the engineered manipulation of fluids at the submillimetre scale, has shown considerable promise for improving diagnostics and biology research. Certain properties of microfluidic technologies, such as rapid sample processing and the precise control of fluids in an assay, have made them attractive candidates to replace traditional experimental approaches. Here we analyse the progress made by lab-on-a-chip microtechnologies in recent years, and discuss the clinical and research areas in which they have made the greatest impact. We also suggest directions that biologists, engineers and clinicians can take to help this technology live up to its potential.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Microfluidic publications in engineering, multidisciplinary, and biology and medicine journals from 2000 to 2012.
Figure 2: The development of visual chemotaxis assays over time.
Figure 3: Materials other than PMDS are being used for microfluidic device design.
Figure 4: Diagnostics in the developing world.
Figure 5: Rapid purification microfluidic systems.
Figure 6: Organ-on-a-chip assays for drug development and specialized diagnostic applications.

References

  1. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and application of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Hansen, C. & Quake, S. R. Microfluidics in structural biology: smaller, faster…better. Curr. Opin. Struct. Biol. 13, 538–544 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Yager, P. et al. Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. El-Ali, J., Sorger, P. & Jensen, K. Cells on chips. Nature 442, 403–411 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical-analysis systems — a novel concept for chemical sensing. Sens. Actuators B 1, 244–248 (1990)

    Article  CAS  Google Scholar 

  7. Reyes, D. R., Iossifidis, D., Auroux, P.-A. & Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636 (2002)This pioneering publication described the concept of a µTAS device.

    Article  CAS  PubMed  Google Scholar 

  8. Walker, G. A passive pumping method for microfluidic devices. Lab Chip 2, 131–134 (2002)Describes a method to passively pump fluids within microchannels using only a micropipette.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, S. H. et al. Capillary based patterning of cellular communities in laterally open channels. Anal. Chem. 82, 2900–2906 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Berry, S. M., Maccoux, L. J. & Beebe, D. J. Streamlining immunoassays with immiscible filtrations assisted by surface tension. Anal. Chem. 84, 5518–5523 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using ‘flow focusing’ in microchannels. Appl. Phys. Lett. 82, 364–366 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Whitesides, G. M. Cool, or simple and cheap? Why not both? Lab Chip 13, 11–13 (2012)

    Article  PubMed  Google Scholar 

  13. Blow, N. Microfluidics: in search of a killer application. Nature Methods 4, 665–670 (2007)

    Article  CAS  Google Scholar 

  14. Becker, H. Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip 9, 2119–2122 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zigmond, S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616 (1977)

    Article  CAS  PubMed  Google Scholar 

  17. Zicha, D., Dunn, G. A. & Brown, A. F. A new direct-viewing chemotaxis chamber. J. Cell Sci. 99, 769–775 (1991)

    PubMed  Google Scholar 

  18. Muinonen-Martin, A. J. A., Veltman, D. M. D., Kalna, G. G. & Insall, R. H. R. An improved chamber for direct visualisation of chemotaxis. PLoS ONE 5, e15309 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keenan, T. M. & Folch, A. Biomolecular gradients in cell culture systems. Lab Chip 8, 34–57 (2008)A detailed review of microfluidic chemical gradient generators.

    Article  CAS  PubMed  Google Scholar 

  20. Irimia, D. Microfluidic technologies for temporal perturbations of chemotaxis. Annu. Rev. Biomed. Eng. 12, 259–284 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kamholz, A. E. & Yager, P. Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophys. J. 80, 155–160 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jeon, N. L. et al. Generation of solution and surface gradients using microfluidic systems. Langmuir 16, 8311–8316 (2000)

    Article  CAS  Google Scholar 

  23. Irimia, D., Geba, D. A. & Toner, M. Universal microfluidic gradient generator. Anal. Chem. 78, 3472–3477 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paguirigan, A. L. & Beebe, D. J. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. Bioessays 30, 811–821 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Butler, K. L. et al. Burn injury reduces neutrophil directional migration speed in microfluidic devices. PLoS ONE 5, e11921 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sackmann, E. K. et al. Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood 120, e45–e53 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jowhar, D., Wright, G., Samson, P. C., Wikswo, J. P. & Janetopoulos, C. Open access microfluidic device for the study of cell migration during chemotaxis. Integr. Biol. 2, 648–658 (2010)

    Article  CAS  Google Scholar 

  28. Kilby, J. S. Miniaturized electronic circuits. US Patent 3,138, 743 (issued, 23 June 1964)

  29. Noyce, R. N. Semiconductor device-and-lead structure. US Patent 2,981, 877 (issued, 25 April 1961)

  30. Van Lintel, H., Vandepol, F. & Bouwstra, S. A piezoelectric micropump based on micromachining of silicon. Sens. Actuators 15, 153–167 (1988)

    Article  Google Scholar 

  31. Harrison, D. J., Manz, A., Fan, Z. H., Ludi, H. & Widmer, H. M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64, 1926–1932 (1992)

    Article  CAS  Google Scholar 

  32. Aumiller, G. D., Chandross, E. A., Tomlinson, W. J. & Weber, H. P. Submicrometer resolution replication of relief patterns for integrated optics. J. Appl. Phys. 45, 4557–4562 (1974)An early example of replicating microfluidic structures with elastomer materials.

    Article  ADS  CAS  Google Scholar 

  33. Masuda, M., Masao, W. & Nanba, T. Novel method of cell fusion in field constriction area in fluid integrated circuit. IEEE Trans. Ind. Appl. 25, 732–737 (1989)

    Article  Google Scholar 

  34. Duffy, D. C. D., McDonald, J. C. J., Schueller, O. J. O. & Whitesides, G. M. G. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Berthier, E., Young, E. W. K. & Beebe, D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 12, 1224–1237 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. Chaudhury, M. K. & Whitesides, G. M. Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7, 1013–1025 (1991)

    Article  CAS  Google Scholar 

  37. Morra, M. et al. On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. J. Colloid Interface Sci. 137, 11–24 (1990)

    Article  ADS  CAS  Google Scholar 

  38. Yang, M. T., Fu, J., Wang, Y.-K., Desai, R. A. & Chen, C. S. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nature Protocols 6, 187–213 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi, C. K., Breckenridge, M. T. & Chen, C. S. Engineered materials and the cellular microenvironment: a strengthening interface between cell biology and bioengineering. Trends Cell Biol. 20, 705–714 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quake, S. R. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Unger, M. A. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Regehr, K. J. et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9, 2132–2139 (2009)A study that details the biological implications of using PDMS in cell biology research.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003)

    Article  CAS  PubMed  Google Scholar 

  44. Toepke, M. W. & Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6, 1484–1486 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. Berthier, E., Warrick, J., Yu, H. & Beebe, D. J. Managing evaporation for more robust microscale assays. Part 1. Volume loss in high throughput assays. Lab Chip 8, 852–859 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, M.-H. M., Dimopoulos, G. G., Mantalaris, A. A. & Varley, J. J. The effect of hyperosmotic pressure on antibody production and gene expression in the GS-NS0 cell line. Biotechnol. Appl. Biochem. 40, 41–46 (2004)

    Article  CAS  PubMed  Google Scholar 

  47. deZengotita, V., Kimura, R. & Miller, W. M. Effects of CO2 and osmolality on hybridoma cells: growth, metabolism and monoclonal antibody production. Cytotechnology 28, 213–227 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heo, Y. S. et al. Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Anal. Chem. 79, 1126–1134 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Futai, N., Gu, W., Song, J. W. & Takayama, S. Handheld recirculation system and customized media for microfluidic cell culture. Lab Chip 6, 149–154 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. Chang, W.-J., Akin, D., Sedlak, M., Ladisch, M. R. & Bashir, R. Poly (dimethylsiloxane)(PDMS) and silicon hybrid biochip for bacterial culture. Biomed. Microdevices 5, 281–290 (2003)

    Article  CAS  Google Scholar 

  51. Becker, H. It’s the economy… Lab Chip. 9, 2759–2762 (2009)

    Article  CAS  PubMed  Google Scholar 

  52. Mukhopadhyay, R. When PDMS isn’t the best. Anal. Chem. 79, 3248–3253 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. Chin, C. D. et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nature Med. 17, 1015–1019 (2011)A study that diagnosed HIV from blood samples in Rwanda using a simple microfluidic chip.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Henry, A. C. et al. Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Anal. Chem. 72, 5331–5337 (2000)

    Article  CAS  PubMed  Google Scholar 

  55. Browne, A. W., Rust, M. J., Jung, W., Lee, S. H. & Ahn, C. H. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels. Lab Chip 9, 2941–2946 (2009)

    Article  CAS  PubMed  Google Scholar 

  56. Becker, H. & Heim, U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A 83, 130–135 (2000)

    Article  CAS  Google Scholar 

  57. Martynova, L. et al. Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem. 69, 4783–4789 (1997)

    Article  CAS  PubMed  Google Scholar 

  58. Goral, V. N., Hsieh, Y.-C., Petzold, O. N., Faris, R. A. & Yuen, P. K. Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds. J. Micromech. Microeng. 21, 017002 (2011)

    Article  ADS  CAS  Google Scholar 

  59. Young, E. W. K. et al. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal. Chem. 83, 1408–1417 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, Y. et al. Benchtop micromolding of polystyrene by soft lithography. Lab Chip 11, 3089–3097 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Young, E. W. K., Berthier, E. & Beebe, D. J. Assessment of enhanced autofluorescence and impact on cell microscopy for microfabricated thermoplastic devices. Anal. Chem. 85, 44–49 (2013)

    Article  CAS  PubMed  Google Scholar 

  62. Nilghaz, A. et al. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip 12, 209–218 (2011)

    Article  PubMed  Google Scholar 

  63. von Lode, P. Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin. Biochem. 38, 591–606 (2005)

    Article  CAS  PubMed  Google Scholar 

  64. Martinez, A. W., Phillips, S. T., Whitesides, G. M. & Carrilho, E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10 (2010)

    Article  CAS  PubMed  Google Scholar 

  65. Carrilho, E., Martinez, A. W. & Whitesides, G. M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009)

    Article  CAS  PubMed  Google Scholar 

  66. Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M. & Whitesides, G. M. FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip 8, 2146–2150 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Abe, K., Suzuki, K. & Citterio, D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem. 80, 6928–6934 (2008)

    Article  CAS  PubMed  Google Scholar 

  68. Olkkonen, J., Lehtinen, K. & Erho, T. Flexographically printed fluidic structures in paper. Anal. Chem. 82, 10246–10250 (2010)

    Article  CAS  PubMed  Google Scholar 

  69. Fu, E. et al. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 84, 4574–4579 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martinez, A. W., Phillips, S. T. & Whitesides, G. M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl Acad. Sci. USA 105, 19606–19611 (2008)A review of advancements in µPAD devices for diagnostics in developing regions.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  71. Apilux, A., Ukita, Y., Chikae, M., Chailapakul, O. & Takamura, Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13, 126–135 (2012)

    Article  PubMed  Google Scholar 

  72. Watkins, N. N. et al. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci. Transl. Med. 5, 214ra170 (2013)

    Article  CAS  PubMed  Google Scholar 

  73. Chin, C. D. et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nature Med. 17, 1015–1019 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Kotz, K. T. et al. Clinical microfluidics for neutrophil genomics and proteomics. Nature Med. 16, 1042–1047 (2010)This study investigated the relationship between protein/genetic information and the clinical condition of burn patients using a simple microfluidic device.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Warner, E. A. et al. Microfluidics-based capture of human neutrophils for expression analysis in blood and bronchoalveolar lavage. Lab. Invest. 91, 1787–1795 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bach, M. K. & Brashler, J. R. Single-step separation of red blood cells, granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. Exp. Cell Res. 61, 387–396 (1970)

    Article  CAS  PubMed  Google Scholar 

  77. Berry, S. M., Alarid, E. T. & Beebe, D. J. One-step purification of nucleic acid for gene expression analysis via Immiscible Filtration Assisted by Surface Tension (IFAST). Lab Chip 11, 1747–1753 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Berry, S. M., Strotman, L. N., Kueck, J. D., Alarid, E. T. & Beebe, D. J. Purification of cell subpopulations via immiscible filtration assisted by surface tension (IFAST). Biomed. Microdevices 13, 1033–1042 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cressey, D. Pfizer slashes R&D. Nature 470, 154 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ. 22, 151–185 (2003)

    Article  PubMed  Google Scholar 

  81. Cressey, D. Traditional drug-discovery model ripe for reform. Nature 471, 17–18 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010)

    Article  CAS  Google Scholar 

  83. Ljunggren, H. G. Academia and big pharma united. Sci. Transl. Med. 6, 217ed1 (2014)

    Article  PubMed  Google Scholar 

  84. Kimura, H., Yamamoto, T., Sakai, H., Sakai, Y. & Fujii, T. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8, 741–746 (2008)

    Article  CAS  PubMed  Google Scholar 

  85. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsai, M. et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Invest. 122, 408–418 (2012)This study utilized precisely patterned microvessels to diagnose vasco-occlusions in patient samples.

    Article  CAS  PubMed  Google Scholar 

  87. Bischel, L. L., Young, E. W. K., Mader, B. R. & Beebe, D. J. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34, 1471–1477 (2013)

    Article  CAS  PubMed  Google Scholar 

  88. Song, J. W. & Munn, L. L. Fluid forces control endothelial sprouting. Proc. Natl Acad. Sci. USA 108, 15342–15347 (2011)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  89. Walsh, C. L. et al. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9, 545–554 (2009)

    Article  CAS  PubMed  Google Scholar 

  90. Zervantonakis, I. K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl Acad. Sci. USA 109, 13515–13520 (2012)This study describes a system that more closely mimics tumour cell intravasation in vitro compared to standard cell biology techniques such as modified Transwell assays.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  91. Sung, K. E. et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. 3, 439–450 (2011)

    Article  CAS  Google Scholar 

  92. Jang, K.-J. & Suh, K.-Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10, 36–42 (2010)

    Article  CAS  PubMed  Google Scholar 

  93. Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wood, D. K., Soriano, A., Mahadevan, L., Higgins, J. M. & Bhatia, S. N. A biophysical indicator of vaso-occlusive risk in sickle cell disease. Sci. Transl. Med. 4, 123ra26 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Berthier, E., Warrick, J. & Casavant, B. Pipette-friendly laminar flow patterning for cell-based assays. Lab Chip 11, 2060–2065 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gorkin, R. et al. Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758–1773 (2010)

    Article  CAS  PubMed  Google Scholar 

  97. Berthier, E. et al. Kit-On-A-Lid-Assays for accessible self-contained cell assays. Lab Chip 13, 424–431 (2013)

    Article  CAS  PubMed  Google Scholar 

  98. Bakkalbasi, N., Bauer, K., Glover, J. & Wang, L. Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomed. Digit. Libr 10.1186/1742-5581-3-7 (2006)

  99. Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. & Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J. 22, 338–342 (2008)

    Article  CAS  PubMed  Google Scholar 

  100. Reymond, N., Borda d’Água, B. & Ridley, A. J. et al. Crossing the endothelial barrier during metastasis. Nature Rev. Cancer 13, 858–870 (2013)

    Article  CAS  Google Scholar 

  101. Díaz-González, M. & Baldi, A. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding. Anal. Chem. 84, 7838–7844 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Berry, B. Casavant, P. Thomas and L. Strotman for discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.K.S. and D.J.B. wrote the manuscript. A.L.F. contributed to the design and execution of the literature searches that measured the quantity of microfluidic publications in various categories.

Corresponding author

Correspondence to David J. Beebe.

Ethics declarations

Competing interests

E.K.S. and D.J.B. have patent applications pending on technology cited in this work. D.J.B. has ownership in Ratio, Inc., BellBrook Labs, LLC and Salus Discovery, LLC. E.K.S. has ownership in Salus Discovery, LLC.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sackmann, E., Fulton, A. & Beebe, D. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014). https://doi.org/10.1038/nature13118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing