Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenomic alterations define lethal CIMP-positive ependymomas of infancy

Abstract

Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somatic SNVs are rare in the posterior fossa ependymoma genome.
Figure 2: DNA-methylation profiles suggest that group A ependymomas demonstrate a CpG island methylator phenotype.
Figure 3: Group A (CIMP+) and group B (CIMP) ependymomas are distinguished by CpG-hypermethylated and H3K27-trimethylated genes related to PRC2 occupancy in ES cells.
Figure 4: Whole-genome bisulphite sequencing validates a CpG island methylator phenotype in group A ependymoma.
Figure 5: Modulation of H3K27 methylation has anti-neoplastic effects against group A ependymoma.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Data deposits

Illumina 450K CpG Methylation array data, NimbleGen 385K CpG Island Plus array data, and ChIP-seq data have been deposited at the Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/) as a GEO super-series under the accession number GSE43353. Whole-genome and whole-exome sequencing data have been deposited in the European Genome-Phenome Archive (EGA: https://www.ebi.ac.uk/ega/) hosted by the EBI, under the accession number EGAS00001000443.

References

  1. Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–335 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Merchant, T. E. et al. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 10, 258–266 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bouffet, E. & Foreman, N. Chemotherapy for intracranial ependymomas. Childs Nerv. Syst. 15, 563–570 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Bouffet, E. et al. Survival benefit for pediatric patients with recurrent ependymoma treated with reirradiation. Int. J. Radiat. Oncol. Biol. Phys. 83, 1541–1548 (2012)

    Article  PubMed  Google Scholar 

  5. Johnson, R. A. et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466, 632–636 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Witt, H. et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20, 143–157 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wani, K. et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol. 123, 727–738 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atkinson, J. M. et al. An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma. Cancer Cell 20, 384–399 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dees, N. D. et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res. 22, 1589–1598 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012)

    Article  ADS  CAS  Google Scholar 

  14. Muzny, D. M. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012)

    Article  ADS  CAS  Google Scholar 

  15. Peifer, M. et al. Integrative genomic analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics 44, 1104–1110 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hammerman, P. S. et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012)

    Article  ADS  CAS  Google Scholar 

  18. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bell, D. et al. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011)

    Article  CAS  Google Scholar 

  22. Pugh, T. J. et al. The genetic landscape of high-risk neuroblastoma. Nature Genetics 45, 279–284 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, R. S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, J. et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Northcott, P. A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Sausen, M. et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nature Genet. 45, 12–17 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genet. 44, 251–253 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genet. 41, 465–472 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39, 237–242 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Kantarjian, H. et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106, 1794–1803 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Tan, J. et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21, 1050–1063 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fang, F. et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci. Transl. Med. 3, 75ra25 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Roman-Gomez, J. et al. Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J. Clin. Oncol. 23, 7043–7049 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Zouridis, H. et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci. Transl. Med. 4, 156ra140 (2012)

    Article  PubMed  Google Scholar 

  44. Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genet. 38, 787–793 (2006)

    Article  CAS  PubMed  Google Scholar 

  46. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. Down, T. A. et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotechnol. 26, 779–785 (2008)

    Article  CAS  Google Scholar 

  48. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958–970 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nature Genet. 43, 768–775 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. Gallo, M. et al. A tumorigenic MLL-homeobox network in human glioblastoma stem cells. Cancer Res. 73, 417–427 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.D.T. holds a Canadian Institutes of Health Research (CIHR) Clinician-Scientist Phase II Award, was a Sontag Foundation Distinguished Scholar, and is supported by The Garron Family Chair in Childhood Cancer Research. M.D.T. is supported by grants from the Cure Search Foundation, The Younger Foundation, the National Institutes of Health (R01CA148699 and R01CA159859), The Pediatric Brain Tumor Foundation, The Canadian Cancer Society, The Terry Fox Research Institute, and Brainchild. S.M., K.M.W. and A.D. are supported by Vanier Scholarships from CIHR. S.M. would like to thank K. Mack, R. Mack, S. Mack and K. Bertrand for their support of this project. This study was conducted with the support of the Ontario Institute for Cancer Research through funding provided by the Government of Ontario. This work was also supported by a Program Project Grant from the Terry Fox Research Institute, and a Grand Challenge Award from CureSearch for Children’s Cancer. Additionally, this work was supported by the PedBrain Tumor Project contributing to the International Cancer Genome Consortium, funded by German Cancer Aid (109252) and by the German Federal Ministry of Education and Research (BMBF, grants 01KU1201A, MedSys 0315416C and NGFNplus 01GS0883). This study was supported by grants from the Sander Foundation and DKTK (Molecular Diagnostics of Pediatric Malignancies). For technical support and expertise of next-generation sequencing efforts we thank the DKFZ Genomics and Proteomics Core Facility, The EMBL Genomics Core Facility, and The Centre for Applied Genomics (Toronto). We thank S. Archer for technical writing and C. Smith for artwork. We thank A. Wittmann, L. Sieber and L. Linke for clinical assistance.

Author information

Authors and Affiliations

Authors

Contributions

S.C.M., H.W., M.D.T., A.K. and S.M.P. conceived and led the study. S.C.M. performed sample preparation, data acquisition and bioinformatic analysis related to DNA methylation, ChIP-seq and transcriptional profiling experiments. S.C.M. also performed western blot analysis and contributed to in vitro and in vivo experiments. H.W. led whole-genome sequencing, whole-exome sequencing and whole-genome bisulphite sequencing efforts, with analytical support from R.M.P., L. Gu., N. Jäger, D.T.W.J., S.S., S.H., T.Z., A.M.S., T.J.P., M.S., H.S.-C., T.T., V.H. and J.O.K. S.Z. and G.D.B. developed and applied pathway analysis methods for all data sets in this study. K.N.-B., M.G., L. Garzia, K.Z., X. Wang, M.B., S.B., P.J., X. Wu, K.C.B., T.M., J.Z., P.S.-C., C.C.F., P.C.-B., Y.Y. and S.A. performed in vitro, in vivo and molecular/biochemical experiments central to the project. DNA methylation and ChIP-seq bioinformatic analysis and experimental design were supported by X.Z., V.R., P.N.K., A.M.D., P.A.N., D.J.H.S., J.P., M. Remke, F.M.G.C., L.L., S.P., S.W.S., S.D.B., M.G., J.K., I.C., R.H. and P.B.D., developed and characterized ependymoma primary cultures, and assisted with in vitro and in vivo experiments. C.L.C. and S.K.V. developed the EZH2 compounds and provided inhibitors for experimentation. S.S.R., L.M., Y.J.C., T.V.M., W.G., B.L., M. Ryzhova, A.K., N.G., J.P., K.W. and K.D.A. provided patient samples and clinical details that made this study possible. M.H., M.A.M., M.L., D.F., A.E.K., A.v.D., O.W., D.M., X.F., K.M.M., M.K., S.L.P., E.B., W.A.W., A.H., U.T., C.H., J.T.R., N. Jabado, J.O.K., R.E., P.L., G.D.B., K.D.A., P.B.D. and S.M.P. provided valuable input regarding study design, data analysis and interpretation of results. M.D.T., S.C.M., H.W., A.K. and S.M.P. wrote the manuscript. M.D.T. and S.M.P. provided financial and technical infrastructure and oversaw the study. M.D.T. and A.K. are joint senior authors and project co-leaders.

Corresponding authors

Correspondence to A. Korshunov or M. D. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-18. (PDF 9722 kb)

Supplementary Tables

This file contains Supplementary Tables 1-23. (XLSX 30536 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mack, S., Witt, H., Piro, R. et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506, 445–450 (2014). https://doi.org/10.1038/nature13108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13108

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing