Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus


Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers1,2,3, and is closely associated with poor prognosis and chemo- or radiotherapeutic resistance4. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark7. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Akt activity fluctuated during the cell cycle and mirrored the periodic cyclin A expression pattern.
Figure 2: Cdk2/cyclin A2 functioned as a physiological kinase phosphorylating Akt1 at both S477 and T479.
Figure 3: Akt1-S477/T479 phosphorylation triggered Akt1-S473 phosphorylation and enhanced Akt1 activation.
Figure 4: Akt tail phosphorylation triggered Akt activation to promote Akt oncogenic functions.


  1. 1

    Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21–35 (2010)

    Article  Google Scholar 

  2. 2

    Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007)

    CAS  Article  Google Scholar 

  3. 3

    Toker, A. Akt signaling: a damaging interaction makes good. Trends Biochem. Sci. 33, 356–359 (2008)

    CAS  Article  Google Scholar 

  4. 4

    Luo, J., Manning, B. D. & Cantley, L. C. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257–262 (2003)

    CAS  Article  Google Scholar 

  5. 5

    Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Stephens, L. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279, 710–714 (1998)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    CAS  Article  Google Scholar 

  8. 8

    Gao, X. & Zhang, J. Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol. Biol. Cell 19, 4366–4373 (2008)

    CAS  Article  Google Scholar 

  9. 9

    Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008)

    CAS  Article  Google Scholar 

  10. 10

    McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998)

    CAS  Article  Google Scholar 

  11. 11

    Murphy, M. et al. Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nature Genet. 15, 83–86 (1997)

    CAS  Article  Google Scholar 

  12. 12

    Maddika, S. et al. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J. Cell Sci. 121, 979–988 (2008)

    CAS  Article  Google Scholar 

  13. 13

    Adams, P. D. et al. Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol. Cell. Biol. 16, 6623–6633 (1996)

    CAS  Article  Google Scholar 

  14. 14

    Kalaszczynska, I. et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138, 352–365 (2009)

    CAS  Article  Google Scholar 

  15. 15

    Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001)

    CAS  Article  Google Scholar 

  16. 16

    Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30, 630–641 (2005)

    CAS  Article  Google Scholar 

  17. 17

    Gray, C. H. & Barford, D. Getting in the ring: proline-directed substrate specificity in the cell cycle proteins Cdc14 and CDK2-cyclinA3. Cell Cycle 2, 500–502 (2003)

    CAS  Article  Google Scholar 

  18. 18

    Liu, P., Kenney, J. M., Stiller, J. W. & Greenleaf, A. L. Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain. Mol. Biol. Evol. 27, 2628–2641 (2010)

    CAS  Article  Google Scholar 

  19. 19

    Stokes, M. P. et al. PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS. Mol. Cell. Proteom. 11, 187–201 (2012)

    CAS  Article  Google Scholar 

  20. 20

    Bozulic, L., Surucu, B., Hynx, D. & Hemmings, B. A. PKBα/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol. Cell 30, 203–213 (2008)

    CAS  Article  Google Scholar 

  21. 21

    Xie, X. et al. IκB kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc. Natl Acad. Sci. USA 108, 6474–6479 (2011)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Yang, J. et al. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nature Struct. Biol. 9, 940–944 (2002)

    CAS  Article  Google Scholar 

  23. 23

    Yang, J. et al. Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell 9, 1227–1240 (2002)

    CAS  Article  Google Scholar 

  24. 24

    Alessi, D. R., Pearce, L. R. & Garcia-Martinez, J. M. New insights into mTOR signaling: mTORC2 and beyond. Sci. Signal. 2, pe27 (2009)

    Article  Google Scholar 

  25. 25

    Maira, S. M. et al. Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294, 374–380 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Gao, T., Furnari, F. & Newton, A. C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18, 13–24 (2005)

    CAS  Article  Google Scholar 

  27. 27

    Gaveriaux-Ruff, C. & Kieffer, B. L. Conditional gene targeting in the mouse nervous system: Insights into brain function and diseases. Pharmacol. Ther. 113, 619–634 (2007)

    CAS  Article  Google Scholar 

  28. 28

    Burgess, D. J. Senescence: double or quit? Nature Rev. Cancer 11, 389 (2011)

    CAS  Article  Google Scholar 

  29. 29

    Butt, A. J. et al. Cell cycle machinery: links with genesis and treatment of breast cancer. Adv. Exp. Med. Biol. 630, 189–205 (2008)

    CAS  Article  Google Scholar 

  30. 30

    Altomare, D. A. & Testa, J. R. Perturbations of the AKT signaling pathway in human cancer. Oncogene 24, 7455–7464 (2005)

    CAS  Article  Google Scholar 

  31. 31

    Gao, D. et al. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nature Cell Biol. 11, 397–408 (2009)

    CAS  Article  Google Scholar 

  32. 32

    Gao, D. et al. Cdh1 regulates cell cycle through modulating the claspin/Chk1 and the Rb/E2F1 pathways. Mol. Biol. Cell 20, 3305–3316 (2009)

    CAS  Article  Google Scholar 

  33. 33

    Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Peng, X. D. et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 17, 1352–1365 (2003)

    CAS  Article  Google Scholar 

  35. 35

    Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nature Genet. 37, 1281–1288 (2005)

    CAS  Article  Google Scholar 

  36. 36

    Tsou, P., Zheng, B., Hsu, C. H., Sasaki, A. T. & Cantley, L. C. A fluorescent reporter of AMPK activity and cellular energy stress. Cell Metab. 13, 476–486 (2011)

    CAS  Article  Google Scholar 

  37. 37

    Karanam, K., Kafri, R., Loewer, A. & Lahav, G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol. Cell 47, 320–329 (2012)

    CAS  Article  Google Scholar 

  38. 38

    Dean, P. N. & Jett, J. H. Mathematical analysis of DNA distributions derived from flow microfluorometry. J. Cell Biol. 60, 523–527 (1974)

    CAS  Article  Google Scholar 

  39. 39

    Toettcher, J. E. et al. Distinct mechanisms act in concert to mediate cell cycle arrest. Proc. Natl Acad. Sci. USA 106, 785–790 (2009)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Gao, D. et al. Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction. Mol. Cell 39, 797–808 (2010)

    CAS  Article  Google Scholar 

  41. 41

    Inuzuka, H. et al. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(β-TRCP) ubiquitin ligase. Cancer Cell 18, 147–159 (2010)

    CAS  Article  Google Scholar 

  42. 42

    Wei, W., Jobling, W. A., Chen, W., Hahn, W. C. & Sedivy, J. M. Abolition of cyclin-dependent kinase inhibitor p16Ink4a and p21Cip1/Waf1 functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol. Cell. Biol. 23, 2859–2870 (2003)

    CAS  Article  Google Scholar 

  43. 43

    Inuzuka, H. et al. Acetylation-dependent regulation of Skp2 function. Cell 150, 179–193 (2012)

    CAS  Article  Google Scholar 

  44. 44

    Min, S. H. et al. Negative regulation of the stability and tumor suppressor function of fbw7 by the pin1 prolyl isomerase. Mol. Cell 46, 771–783 (2012)

    CAS  Article  Google Scholar 

  45. 45

    Otero, J. J. et al. Cerebellar cortical lamination and foliation require cyclin A2. Dev. Biol. 385, 328–339 (2014)

    CAS  Article  Google Scholar 

Download references


We thank J. Guo, J.J. Liu, A.W. Lau, S. Shaik, A. Tron, X. Dai and K. Xu for reading the manuscript, S.B. Breitkopf for help with mass spectrometry experiments, Y. Geng, L. Liu, K. Ran, R. Chin and S. Elloul for providing reagents, and members of the Wei, Toker, Sicinski, Pandolfi and Cantley laboratories for discussions. W.W. is an American Cancer Society and a Leukemia & Lymphoma Society research scholar. P.L. is supported by 5T32HL007893. This work was supported in part by National Institutes of Health grants to W.W. (GM089763, GM094777 and CA177910), J.M.A. (2P01CA120964) and P.S. (R01CA132740).

Author information




P.L., M.B., W.M., H.I., A.P., M.G., D.G., P.T. and W.G. performed most of the experiments with assistance from B.K., L.W., A.S., B.Z. and M.Y. W.W., P.S., P.P.P., L.C. and P.L. designed the experiments. W.W., L.C., P.S., P.P.P., M.W.K. and A.T. supervised the study. P.L. and W.W. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Wenyi Wei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-12. (PDF 9101 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, P., Begley, M., Michowski, W. et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature 508, 541–545 (2014).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing