Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The rise of oxygen in Earth’s early ocean and atmosphere

Subjects

Abstract

The rapid increase of carbon dioxide concentration in Earth’s modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth’s history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of Earth’s atmospheric oxygen content through time.
Figure 2: Summary of carbon (black) and sulphur (red and grey) isotope data through Earth’s history.
Figure 3: Ocean ventilation and evolving ocean redox structure.

Similar content being viewed by others

References

  1. Roscoe, S. M. Huronian rocks and uraniferous conglomerates in the Canadian Shield. Geol. Surv. Pap. Can. 68–40. (1969)

  2. Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)Formalized the notion of the GOE and highlighted the important balance between oxygen production and oxygen-buffering reactions, via reduced volatile compounds, in modulating the prevailing redox state at Earth’s surface.

    ADS  CAS  Google Scholar 

  3. Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005)

    ADS  CAS  Google Scholar 

  5. Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S. R. & Taylor, B. E. Sulfur isotope evidence for an oxic Archaean atmosphere. Nature 442, 908–911 (2006)

    ADS  CAS  PubMed  Google Scholar 

  6. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999)Essential organic biomarker study that provided the most-cited evidence for the earliest records of oxygen-producing photosynthesis, well before the GOE; the integrity of the biomarker data has been challenged in recent years.

    CAS  PubMed  Google Scholar 

  7. Brocks, J. J. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination? Geochim. Cosmochim. Acta 75, 3196–3213 (2011)

    ADS  CAS  Google Scholar 

  8. Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008)

    ADS  CAS  PubMed  Google Scholar 

  9. Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007)Drew attention to the possibility of oxidative weathering of the continents—well before the GOE; recent challenges to the late Archaean organic biomarker record have elevated the value of the study’s inorganic data as likely signatures of pre-GOE oxygenesis.

    ADS  CAS  PubMed  Google Scholar 

  10. Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011)

    ADS  CAS  PubMed  Google Scholar 

  11. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)

    ADS  CAS  PubMed  Google Scholar 

  12. Catling, D. C., Zahnle, K. J. & McKay, C. P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001)Model exploring the consequences of atmospheric hydrogen escape for the redox budget of the evolving Earth; it has become a crucial lynchpin in the examination of Earth’s oxygenation within a planetary context.

    ADS  CAS  PubMed  Google Scholar 

  13. Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006)

    CAS  Google Scholar 

  14. Zahnle, K. J., Caltling, D. C. & Claire, M. W. The rise of oxygen and the hydrogen hourglass. Chem. Geol (in the press)

  15. Kirschvink, J. L. & Kopp, R. E. Paleoproterozic icehouses and the evolution of oxygen mediating enzymes: the case for a late origin of Photosystem-II. Phil. Trans. R. Soc. B 363, 2755–2765 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000)Arguably the ‘smoking gun’ for the GOE—the loss of non-mass-dependent sulphur isotope fractionations—and thus launched a new wave of sulphur studies in Precambrian biogeochemistry and refined our understanding of early oxygenation.

    ADS  CAS  PubMed  Google Scholar 

  17. Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002)

    ADS  CAS  PubMed  Google Scholar 

  18. Zahnle, K. J., Claire, M. & Catling, D. The loss of mass-independent fractionation in sulfur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006)

    CAS  Google Scholar 

  19. Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar, J. & Poulton, S. W. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nature Geosci. 5, 359–363 (2012)

    ADS  CAS  Google Scholar 

  20. Halevy, I., Johnston, D. T. & Schrag, D. P. Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204–207 (2010)

    ADS  CAS  PubMed  Google Scholar 

  21. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)Spawned the concept of the ‘Canfield’ ocean by developing the idea that the ocean remained anoxic and probably euxinic for a billion years of the mid-Proterozoic, thus highlighting the essential lag between atmospheric and oceanic oxygenation and setting the stage for a generation of research in Precambrian oxygenation.

    ADS  CAS  Google Scholar 

  22. Rosing, M. T. & Frei, R. U-rich Archaean sea-floor sediments from Greenland—indications of 3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217, 237–244 (2004)

    ADS  CAS  Google Scholar 

  23. Cairns-Smith, A. G. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276, 807–808 (1978)

    ADS  CAS  Google Scholar 

  24. Crowe, S. A. et al. Photoferrotrophs thrive in an Archean ocean analogue. Proc. Natl Acad. Sci. USA 105, 15938–15943 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Konhauser, K. O. et al. Could bacteria have formed the Precambrian banded iron formations? Geology 30, 1079–1082 (2002)

    ADS  CAS  Google Scholar 

  26. Bosak, T., Knoll, A. H. & Petroff, A. P. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 41, 21–44 (2013)

    ADS  CAS  Google Scholar 

  27. Waldbauer, J. R., Newman, D. K. & Summons, R. E. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proc. Natl Acad. Sci. USA 108, 13409–13414 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. French, K. L. et al. Archean hydrocarbon biomarkers: Archean or not? Goldschmidt 2013 Conf. Abstr. http://goldschmidtabstracts.info/2013/1110.pdf (2013)

  29. Kasting, J. F. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C. ) Ch. 26.2 1185–1188 (Cambridge Univ. Press, 1992)

    Google Scholar 

  30. Farquhar, J., Zerkle, A. L. & Bekker, A. Geological constraints on the origin of oxygenic photosynthesis. Photosynth. Res. 107, 11–36 (2011)

    CAS  PubMed  Google Scholar 

  31. Kendall, B., Creaser, R. A., Gordon, G. W. & Anbar, A. D. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochim. Cosmochim. Acta 73, 2534–2558 (2009)

    ADS  CAS  Google Scholar 

  32. Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009)

    ADS  CAS  PubMed  Google Scholar 

  33. Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013)

    ADS  CAS  PubMed  Google Scholar 

  34. Guo, Q. et al. Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology 37, 399–402 (2009)

    ADS  Google Scholar 

  35. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004)First study to attempt to fingerprint the GOE precisely, using a tightly constrained stratigraphic record of the disappearance of NMD sulphur isotope fractionations, thus defining a temporal context for oxygenation models and major related climate events.

    ADS  CAS  PubMed  Google Scholar 

  36. Konhauser, K. O. et al. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478, 369–373 (2011)

    ADS  CAS  PubMed  Google Scholar 

  37. Crowe, S. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013)

    ADS  CAS  PubMed  Google Scholar 

  38. Berner, R. A. The Phanerozoic Carbon Cycle (Oxford Univ. Press, 2004)

    Google Scholar 

  39. Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006)

    ADS  CAS  PubMed  Google Scholar 

  40. Canil, D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 195, 75–90 (2002)

    ADS  CAS  Google Scholar 

  41. Li, Z. X. A. & Lee, C. T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004)

    ADS  CAS  Google Scholar 

  42. Trail, D., Watson, E. B. & Tailby, N. D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480, 79–82 (2011)

    ADS  CAS  PubMed  Google Scholar 

  43. Konhauser, K. O. et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750–753 (2009)

    ADS  CAS  PubMed  Google Scholar 

  44. Evans, D. A., Beukes, N. J. & Kirschvink, J. L. Low-latitude glaciation in the Palaeoproterozoic era. Nature 386, 262–266 (1997)

    ADS  CAS  Google Scholar 

  45. Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002)

    ADS  CAS  PubMed  Google Scholar 

  46. Haqq-Misra, J. D., Domagal-Goldmann, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008)

    ADS  CAS  PubMed  Google Scholar 

  47. Jamieson, J. W., Wing, B. A., Farquhar, J. & Hannington, M. D. Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nature Geosci. 6, 61–64 (2013)

    ADS  CAS  Google Scholar 

  48. Pavlov, A. A., Kasting, J. F. & Brown, L. L. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981–11990 (2000)

    ADS  CAS  PubMed  Google Scholar 

  49. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009)

    CAS  PubMed  Google Scholar 

  50. Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981)

    ADS  CAS  Google Scholar 

  51. Sagan, C. & Mullen, G. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972)

    ADS  CAS  PubMed  Google Scholar 

  52. Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996)

    ADS  CAS  Google Scholar 

  53. Planavsky, N. J., Bekker, A., Hofmann, A., Owens, J. D. & Lyons, T. W. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc. Natl Acad. Sci. USA 109, 18300–18305 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. B 361, 931–950 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schröder, S., Bekker, A., Beukes, N. J., Strauss, H. & van Niekerk, H. S. Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the 2.2–2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova 20, 108–117 (2008)

    ADS  Google Scholar 

  56. Partin, C. A. et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet. Sci. Lett. 369–370, 284–293 (2013)

    ADS  Google Scholar 

  57. Bekker, A. & Holland, H. D. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sci. Lett. 317–318, 295–304 (2012)

    ADS  Google Scholar 

  58. Boyle, R. A. et al. Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean. Nature Commun. 4, 1533 (2013)

    ADS  CAS  Google Scholar 

  59. Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic biosphere. Nature 452, 456–459 (2008)

    ADS  CAS  PubMed  Google Scholar 

  60. Reinhard, C. et al. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl Acad. Sci. USA 110, 5357–5362 (2013)State-of-the-art exploration of the redox landscape of the mid-Proterozoic ocean—with important implications for the mechanisms behind the persistently low levels of biospheric oxygen that defined the ‘boring billion’.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002)Building from the concept of the ‘Canfield’ ocean, this was the first paper to develop the idea of possible trace-metal limitations under assumed widespread euxinia in the mid-Proterozoic ocean as a throttle on early eukaryotic expansion.

    ADS  CAS  PubMed  Google Scholar 

  62. Dupont, C. L., Butcher, A., Valas, R. E., Bourne, P. E. & Caetano-Anolles, G. History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc. Natl Acad. Sci. USA 107, 10567–10572 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arnold, G. L., Anbar, A. D., Barling, J. & Lyons, T. W. Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science 304, 87–90 (2004)

    ADS  CAS  PubMed  Google Scholar 

  64. Zbinden, E. A., Holland, H. D., Feakes, C. R. & Dobos, S. K. The Sturgeon Falls paleosol and the composition of the atmosphere 1.1 Ga Bp. Precambr. Res. 42, 141–163 (1988)

    ADS  CAS  Google Scholar 

  65. Frei, R., Gaucher, C., Poulton, S. W. & Canfield, D. E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461, 250–253 (2009)

    ADS  CAS  PubMed  Google Scholar 

  66. Clement, B. G., Luther, G. W. & Tebo, B. M. Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone. Geochim. Cosmochim. Acta 73, 1878–1889 (2009)

    ADS  CAS  Google Scholar 

  67. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298, 621–672 (1998)

    ADS  CAS  PubMed  Google Scholar 

  68. Shen, Y., Canfield, D. E. & Knoll, A. H. Middle Proterozoic ocean chemistry: Evidence from McArthur Basin, Northern Australia. Am. J. Sci. 302, 81–109 (2002)

    ADS  CAS  Google Scholar 

  69. Lyons, T. W., Anbar, A. D., Severmann, S., Scott, C. & Gill, B. C. Tracking euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study. Annu. Rev. Earth Planet. Sci. 37, 507–534 (2009)

    ADS  CAS  Google Scholar 

  70. Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011)

    ADS  CAS  PubMed  Google Scholar 

  71. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements 7, 107–112 (2011)

    CAS  Google Scholar 

  72. Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geosci. 3, 486–490 (2010)

    ADS  CAS  Google Scholar 

  73. Johnston, D. T., Wolfe-Simon, F., Pearson, A. & Knoll, A. H. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age. Proc. Natl Acad. Sci. USA 106, 16925–16929 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Slack, J. F., Grenne, T., Bekker, A., Rouxel, O. J. & Lindberg, P. A. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet. Sci. Lett. 255, 243–256 (2007)

    ADS  CAS  Google Scholar 

  75. Glass, J. B., Wolfe-Simon, F. & Anbar, A. D. Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology 7, 100–123 (2009)

    CAS  PubMed  Google Scholar 

  76. Bekker, A. et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467–508 (2010)

    CAS  Google Scholar 

  77. Kump, L. R. & Seyfried, W. E. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005)

    ADS  CAS  Google Scholar 

  78. Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110, 26–57 (2012)

    ADS  CAS  Google Scholar 

  79. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007)

    ADS  CAS  PubMed  Google Scholar 

  80. Sahoo, S. K. et al. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489, 546–549 (2012)

    ADS  CAS  PubMed  Google Scholar 

  81. Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006)

    ADS  CAS  PubMed  Google Scholar 

  82. Grotzinger, J. P., Fike, D. A. & Fischer, W. W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nature Geosci. 4, 285–292 (2011)

    ADS  CAS  Google Scholar 

  83. Swart, P. K. & Kennedy, M. J. Does the global stratigraphic reproducibility of δ13C in Neoproterozoic carbonates require a marine origin? A Pliocene-Pleistocene comparison. Geology 40, 87–90 (2012)

    ADS  CAS  Google Scholar 

  84. Canfield, D. E. et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321, 949–952 (2008)

    ADS  CAS  PubMed  Google Scholar 

  85. Lyons, T. W., Reinhard, C. T., Love, G. D. & Xiao, S. in Fundamentals of Geobiology (eds Knoll, A. H., Canfield, D. E. & Konhauser, K. O. ) 371–402 (Blackwell, 2012)

    Google Scholar 

  86. Planavsky, N. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010)

    ADS  CAS  PubMed  Google Scholar 

  87. Swanson-Hysell, N. L. et al. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328, 608–611 (2010)

    ADS  CAS  PubMed  Google Scholar 

  88. Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011)Essential overview of our present understanding of the cause-and-effect relationships among early animal evolution and diversification, increasing ecological complexity, and environmental change—particularly oxygenation of the ocean and atmosphere.

    ADS  CAS  PubMed  Google Scholar 

  89. Love, G. D. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009)

    ADS  CAS  PubMed  Google Scholar 

  90. Maloof, A. C. et al. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geosci. 3, 653–659 (2010)

    ADS  CAS  Google Scholar 

  91. Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7, 1–7 (2009)

    CAS  PubMed  Google Scholar 

  92. Sperling, E. A. Oxygen, ecology, and the Cambrian radiation of animals. Proc. Natl Acad. Sci. USA 110, 13446–13451 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 53–56 (1995)

    ADS  CAS  PubMed  Google Scholar 

  94. Baldwin, G. J., Nägler, T. F., Gerber, N. D., Turner, E. C. & Kamber, B. S. Mo isotopic composition of the mid-Neoproterozoic ocean: an iron formation perspective. Precambr. Res. 230, 168–178 (2013)

    ADS  CAS  Google Scholar 

  95. Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008)

    ADS  CAS  PubMed  Google Scholar 

  96. Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989)

    ADS  CAS  PubMed  Google Scholar 

  97. Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004)

    ADS  CAS  Google Scholar 

  98. Sarmiento, J. L., Herbert, T. D. & Toggweiler, J. R. Causes of anoxia in the world ocean. Glob. Biogeochem. Cycles 2, 115–128 (1988)

    ADS  CAS  Google Scholar 

  99. Overmann, J., Beatty, J. T., Krouse, H. R. & Hall, K. J. The sulfur cycle in the chemocline of a meromictic salt lake. Limnol. Oceanogr. 41, 147–156 (1996)

    ADS  CAS  Google Scholar 

  100. Tromp, T. K., VanCappellen, P. & Key, R. M. A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments. Geochim. Cosmochim. Acta 59, 1259–1284 (1995)

    ADS  CAS  Google Scholar 

  101. Kharecha, P., Kasting, J. & Siefert, J. A. coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005)

    CAS  Google Scholar 

  102. Thunell, R. C. et al. Organic carbon fluxes, degradation, and accumulation in an anoxic basin: Sediment trap results from the Cariaco Basin. Limnol. Oceanogr. 45, 300–308 (2000)

    ADS  CAS  Google Scholar 

  103. Messie, M. et al. Potential new production estimates in four eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 151–158 (2009)

    ADS  Google Scholar 

  104. Algeo, T. J. & Lyons, T. W. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21, PA1016 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

Funding from NSF-EAR, the NASA Exobiology Program, the NASA Astrobiology Institute, and the Agouron Institute supported this work. C.T.R. acknowledges support from an O. K. Earl Postdoctoral Fellowship in Geological and Planetary Sciences at the California Institute of Technology. N.J.P. acknowledges support from NSF-EAR-PDF. Comments and criticism from A. Bekker, D. Erwin, I. Halevy and D. Johnston improved the manuscript. A. Bekker was helpful in discussions about the GOE and suggested the acronym ‘GOT’.

Author information

Authors and Affiliations

Authors

Contributions

C.T.R. and N.J.P. designed the model for O2-producing photosynthesis and its relationship to Archaean organic carbon presented in Box 1. C.T.R. and N.J.P. compiled the database, and C.T.R. performed the modelling presented in Box 1. T.W.L. wrote the manuscript with major contributions from C.T.R. and N.J.P.

Corresponding author

Correspondence to Timothy W. Lyons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, T., Reinhard, C. & Planavsky, N. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014). https://doi.org/10.1038/nature13068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13068

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing