Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle

Abstract

Mantle flow involves large strains of polymineral aggregates. The strongly anisotropic plastic response of each individual grain in the aggregate results from the interactions between neighbouring grains and the continuity of material displacement across the grain boundaries. Orthorhombic olivine, which is the dominant mineral phase of the Earth’s upper mantle, does not exhibit enough slip systems to accommodate a general deformation state by intracrystalline slip without inducing damage. Here we show that a more general description of the deformation process that includes the motion of rotational defects referred to as disclinations can solve the olivine deformation paradox. We use high-resolution electron backscattering diffraction (EBSD) maps of deformed olivine aggregates to resolve the disclinations. The disclinations are found to decorate grain boundaries in olivine samples deformed experimentally and in nature. We present a disclination-based model of a high-angle tilt boundary in olivine, which demonstrates that an applied shear induces grain-boundary migration through disclination motion. This new approach clarifies grain-boundary-mediated plasticity in polycrystalline aggregates. By providing the missing mechanism for describing plastic flow in olivine, this work will permit multiscale modelling of the rheology of the upper mantle, from the atomic scale to the scale of the flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Volterra’s distortions.
Figure 2: Geometrically necessary dislocation densities in olivine.
Figure 3: Three maps representing the density of wedge disclinations θ33 in three deformed olivine aggregates, and the probability of occurrence for sample T0548.
Figure 4: Disclination-based modelling of the (011)/[100] tilt grain boundary with misorientation 60° modelled at the atomic scale in olivine21.
Figure 5: Shear-coupled boundary migration of the (011)/[100] tilt grain boundary of Fig. 4.

Similar content being viewed by others

References

  1. Kohlstedt, D. L., Evans, B. & Mackwell, S. J. Strength of the lithosphere—constraints imposed by laboratory experiments. J. Geophys. Res. 100 (B9). 17587–17602 (1995)

    Article  ADS  Google Scholar 

  2. Hirth, G. & Kohlstedt, D. L. in Inside the Subduction Factory (ed. Eiler, J. ) 83–105 (American Geophysical Union, 2003)

    Book  Google Scholar 

  3. Von Mises, R. Mechanik der plastischen Formänderung von Kristallen. Z. Angew. Math. Mech. 8, 161–185 (1928)

    Article  Google Scholar 

  4. Hutchinson, J. W. Creep and plasticity of hexagonal polycrystals as related to single crystal slip. Metall. Trans. A 8, 1465–1469 (1977)

    Article  Google Scholar 

  5. Hirth, G. & Kohlstedt, D. L. Experimental constraints on the dynamics of the partially molten upper-mantle. 2. Deformation in the dislocation creep regime. J. Geophys. Res. 100 (B8). 15441–15449 (1995)

    Article  ADS  Google Scholar 

  6. Hansen, L. N., Zimmerman, M. E. & Kohlstedt, D. L. Grain boundary sliding in San Carlos olivine: flow law parameters and crystallographic-preferred orientation. J. Geophys. Res. 116, B08201 (2011)

    ADS  Google Scholar 

  7. Langdon, T. G. Grain boundary sliding revisited: developments in sliding over four decades. J. Mater. Sci. 41, 597–609 (2006)

    Article  CAS  ADS  Google Scholar 

  8. Detrez, F., Castelnau, O., Cordier, P., Merkel, S. & Raterron, P. Second-order theory for the effective behavior in viscoplatic polycrystals without sufficient slip system families: application to olivine. J. Mech. Phys. Solids (submitted)

  9. Volterra, V. Sur l'équilibre des corps élastiques multiplement connexes. Ann. Sci. Ecole Norm. Super. 24, 401–517 (1907)

    Article  Google Scholar 

  10. Friedel, J. Dislocations (Pergamon, 1967)

    MATH  Google Scholar 

  11. Romanov, A. E. & Vladimirov, V. I. in Dislocations in Solids Vol. 9 (ed. Nabarro, F. R. N. ) 191–402 (North-Holland, 1992)

    Google Scholar 

  12. Romanov, A. E. & Kolesnikova, A. L. Application of disclination concept to solid structures. Prog. Mater. Sci. 54, 740–769 (2009)

    Article  CAS  Google Scholar 

  13. Beausir, B. & Fressengeas, C. Disclination densities from EBSD orientation mapping. Int. J. Solids Struct. 50, 137–146 (2013)

    Article  Google Scholar 

  14. Pantleon, W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr. Mater. 58, 994–997 (2008)

    Article  CAS  Google Scholar 

  15. Demouchy, S., Tommasi, A., Barou, F., Mainprice, D. & Cordier, P. Deformation of olivine in torsion under hydrous conditions. Phys. Earth Planet. Inter. 202, 56–70 (2012)

    Article  ADS  Google Scholar 

  16. Seront, B. Déformation Expérimentale à Haute Pression et Haute Température d'Agrégats Polycristallins de Plagioclase et d'Olivine. PhD thesis, Montpellier Univ. (1993)

  17. Arndt, N. T. et al. Olivine, and the origin of kimberlite. J. Petrol. 51, 573–602 (2010)

    Article  CAS  ADS  Google Scholar 

  18. Soustelle, V., Tommasi, A., Demouchy, S. & Ionov, D. A. Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha Volcano, Kamchatka. J. Petrol. 51, 363–394 (2010)

    Article  CAS  ADS  Google Scholar 

  19. Falus, G., Tommasi, A. & Soustelle, V. The effect of dynamic recrystallization on olivine crystal preferred orientations in mantle xenoliths deformed under varied stress conditions. J. Struct. Geol. 33, 1528–1540 (2011)

    Article  ADS  Google Scholar 

  20. Ashby, M. F. Deformation of plastically non-homogeneous materials. Phil. Mag. 21, 399–424 (1970)

    Article  CAS  ADS  Google Scholar 

  21. Adjaoud, O., Marquardt, K. & Jahn, S. Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling. Phys. Chem. Miner. 39, 749–760 (2012)

    Article  CAS  ADS  Google Scholar 

  22. Gomez Barreiro, J. et al. Preferred orientation of anorthite deformed experimentally in Newtonian creep. Earth Planet. Sci. Lett. 264, 188–207 (2007)

    Article  ADS  Google Scholar 

  23. Miyazaki, T., Sueyoshi, K. & Hiraga, T. Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature 502, 321–326 (2013)

    Article  CAS  ADS  Google Scholar 

  24. Fressengeas, C., Taupin, V. & Capolungo, L. An elasto-plastic theory of dislocation and disclination fields. Int. J. Solids Struct. 48, 3499–3509 (2011)

    Article  Google Scholar 

  25. Taupin, V., Capolungo, L., Fressengeas, C., Das, A. & Upadhyay, M. Grain boundary modeling using an elasto-plastic theory of dislocation and disclination fields. J. Mech. Phys. Solids 61, 370–384 (2013)

    Article  ADS  Google Scholar 

  26. Varadhan, S. N., Beaudoin, A. J., Acharya, A. & Fressengeas, C. Dislocation transport using an explicit Galerkin/least-squares formulation. Model. Simul. Mater. Sci. Eng. 14, 1245–1270 (2006)

    Article  ADS  Google Scholar 

  27. Demouchy, S. Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in Earth's mantle. Earth Planet. Sci. Lett. 295, 305–313 (2010)

    Article  CAS  ADS  Google Scholar 

  28. Demouchy, S., Tommasi, A., Boffa Ballaran, T. & Cordier, P. Weak stresses for Earth’s uppermost mantle inferred from tri-axial deformation experiments on dry olivine crystals. Phys. Earth Planet. Inter. 220, 37–49 (2013)

    Article  ADS  Google Scholar 

  29. Paterson, M. S. & Olgaard, D. L. Rock deformation tests to large shear strains in torsion. J. Struct. Geol. 22, 1341–1358 (2000)

    Article  ADS  Google Scholar 

  30. Demouchy, S. et al. Forsterite to wadsleyite phase transformation under shear stress and consequences for the Earth’s mantle transition zone. Phys. Earth Planet. Inter. 184, 91–104 (2011)

    Article  CAS  ADS  Google Scholar 

  31. Mindlin, R. D. & Tiersten, H. F. Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  Google Scholar 

  32. de Wit, R. in Fundamental Aspects of Dislocation Theory Vol. 1 (ed. Simmons, J. A., de Wit, R. & Bullough, R. ) 651–680 (National Bureau of Standards, 1970)

    Google Scholar 

  33. Upadhyay, M. V., Capolungo, L., Taupin, V. & Fressengeas, C. Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinations. Phil. Mag. 93, 794–832 (2013)

    Article  CAS  ADS  Google Scholar 

  34. Webb, S. L. The elasticity of the upper mantle orthosilicates olivine and garnet to 3GPa. Phys. Chem. Miner. 16, 684–692 (1989)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the European Research Council under the Seventh Framework Programme (FP7—ERC grant number 290424—RheoMan), from a Marie Curie fellowship (FP7-PEOPLE-20074-3-IRG, grant number 230748-PoEM) and from the Agence Nationale de la Recherche (grant number ANR-11-JS09-007-01, NanoMec).

Author information

Authors and Affiliations

Authors

Contributions

S.D. deformed the olivine samples and performed the EBSD measurements (with the help of F.B.). B.B., V.T. and C.F. performed the data analysis and disclination modelling. P.C. wrote the paper with feedback and contributions from all co-authors. All authors discussed and interpreted the results.

Corresponding author

Correspondence to Patrick Cordier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Density of wedge disclinations θ33 in the PI-1619 sintered sample.

The density is given in radians per square micrometre. The local Burgers vectors arising from edge dislocations are represented by the blue arrows: their horizontal and vertical components are, respectively, α13 and α23 (given per micrometre).

Extended Data Table 1 Parameters related to the EBSD map recorded in this study

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary References. (PDF 1831 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordier, P., Demouchy, S., Beausir, B. et al. Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 507, 51–56 (2014). https://doi.org/10.1038/nature13043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13043

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing