Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The ensemble nature of allostery

Abstract

Allostery is the process by which biological macromolecules (mostly proteins) transmit the effect of binding at one site to another, often distal, functional site, allowing for regulation of activity. Recent experimental observations demonstrating that allostery can be facilitated by dynamic and intrinsically disordered proteins have resulted in a new paradigm for understanding allosteric mechanisms, which focuses on the conformational ensemble and the statistical nature of the interactions responsible for the transmission of information. Analysis of allosteric ensembles reveals a rich spectrum of regulatory strategies, as well as a framework to unify the description of allosteric mechanisms from different systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structure-based views of allostery.
Figure 2: The dynamic continuum of allosteric phenomena.
Figure 3: Allosteric systems from the dynamic continuum.

References

  1. Monod, J. & Jacob, F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961)

    Article  CAS  PubMed  Google Scholar 

  2. Changeux, J. P. The feedback control mechanisms of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harb. Symp. Quant. Biol. 26, 313–318 (1961)

    Article  CAS  PubMed  Google Scholar 

  3. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965)

    Article  CAS  PubMed  Google Scholar 

  4. Freiburger, L. A. et al. Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nature Struct. Mol. Biol. 18, 288–294 (2011)

    Article  CAS  Google Scholar 

  5. Nussinov, R., Tsai, C. J. & Ma, B. The (still) underappreciated role of allostery in the cellular network. Annu. Rev. Biophys. 42, 169–189 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monod, J. Chance and Necessity: Essay on the Natural Philosophy of Modern Biology (Penguin Books, 1977)

    Google Scholar 

  7. Fenton, A. W. Allostery: an illustrated definition for the “second secret of life”. Trends Biochem. Sci. 33, 420–425 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hilser, V. J., Wrabl, J. O. & Motlagh, H. N. Structural and energetic basis of allostery. Ann. Rev. Biophys. 41, 585–609 (2012)

    Article  CAS  Google Scholar 

  9. Perutz, M. F. et al. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185, 416–422 (1960)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Perutz, M. F. Stereochemistry of cooperative effects in haemoglobin. Nature 228, 726–734 (1970)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Dickerson, R. E. X-ray studies of protein mechanisms. Annu. Rev. Biophys. Chem. 41, 815–842 (1972)

    CAS  Google Scholar 

  12. Laskowski, R. A., Gerick, F. & Thornton, J. M. The structural basis of allosteric regulation in proteins. FEBS Lett. 583, 1692–1698 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Perutz, M. F., Wilkinson, A. J., Paoli, M. & Dodson, G. G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27, 1–34 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Changeux, J. P. & Edelstein, S. J. Allosteric mechanisms of signal transduction. Science 308, 1424–1428 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Gunasekaran, K., Ma, B. & Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins Struct. Funct. Bioinf. 57, 433–443 (2004)

    Article  CAS  Google Scholar 

  16. Tzeng, S. R. & Kalodimos, C. G. Protein dynamics and allostery: an NMR view. Curr. Opin. Struct. Biol. 21, 62–67 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Kern, D. & Zuiderweg, E. R. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748–757 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Smock, R. G. & Gierasch, L. M. Sending signals dynamically. Science 324, 198–203 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsai, C. J., del Sol, A. & Nussinov, R. Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol. Biosyst. 5, 207–216 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daily, M. D. & Gray, J. J. Allosteric communication occurs via networks of tertiary and quaternary motions in proteins. PLOS Comput. Biol. 5, e1000293 (2009)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  21. Swain, J. F. et al. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26, 27–39 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zuiderweg, E. R. et al. Allostery in the Hsp70 chaperone proteins. Top. Curr. Chem. 328, 99–153 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petit, C. M., Zhang, J., Sapienza, P. J., Fuentes, E. J. & Lee, A. L. Hidden dynamic allostery in a PDZ domain. Proc. Natl Acad. Sci. USA 106, 18249–18254 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tzeng, S. R. & Kalodimos, C. G. Protein activity regulation by conformational entropy. Nature 488, 236–240 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Tzeng, S. R. & Kalodimos, C. G. Dynamic activation of an allosteric regulatory protein. Nature 462, 368–372 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Popovych, N., Sun, S., Ebright, R. H. & Kalodimos, C. G. Dynamically driven protein allostery. Nature Struct. Mol. Biol. 13, 831–838 (2006)The first experimental demonstrations of dynamically mediated protein allostery in the CAP using relaxation dispersion NMR and NMR-detected hydrogen exchange.

    Article  CAS  Google Scholar 

  27. Reichheld, S. E., Yu, Z. & Davidson, A. R. The induction of folding cooperativity by ligand binding drives the allosteric response of tetracycline repressor. Proc. Natl Acad. Sci. USA 106, 22263–22268 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia-Pino, A. et al. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101–111 (2010)This article demonstrates how increasing the relative concentration of one ligand can result in conditional cooperativity in an intrinsically disordered protein; in other words, the same protein can initially be an on-switch but then an off-switch at higher concentrations.

    Article  CAS  PubMed  Google Scholar 

  29. Sevcsik, E., Trexler, A. J., Dunn, J. M. & Rhoades, E. Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J. Am. Chem. Soc. 133, 7152–7158 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferreon, A. C. M., Ferreon, J. C., Wright, P. E. & Deniz, A. A. Modulation of allostery by protein intrinsic disorder. Nature 498, 390–394 (2013)This article directly demonstrates cooperative ‘switching’ behaviour in an intrinsically disordered protein, via allosteric effects from truncation of the amino acid sequence.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Monod, J., Changeux, J. P. & Jacob, F. Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329 (1963)

    Article  CAS  PubMed  Google Scholar 

  32. Koshland, D. E., Nemethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385 (1966)

    Article  CAS  PubMed  Google Scholar 

  33. Cui, Q. & Karplus, M. Allostery and cooperativity revisited. Protein Sci. 17, 1295–1307 (2008)A thoughtful, comprehensive review that synthesizes the ‘old’ and ‘new’ views of allostery with experimental and computational case studies from the literature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koshland, D. E. Enzyme flexibility and enzyme action. J. Cell. Comp. Physiol. 54, 245–258 (1959)

    Article  CAS  PubMed  Google Scholar 

  35. Whitley, M. J. & Lee, A. L. Frameworks for understanding long-range intra-protein communication. Curr. Protein Pept. Sci. 10, 116–127 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Changeux, J. P. Allostery and the Monod–Wyman–Changeux model after 50 years. Ann. Rev. Biophys. 41, 103–133 (2012)

    Article  CAS  Google Scholar 

  37. Eaton, W. A. et al. Evolution of allosteric models for hemoglobin. IUBMB Life 59, 586–599 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Eaton, W. A., Henry, E. R., Hofrichter, J. & Mozzarelli, A. Is cooperative oxygen binding by hemoglobin really understood? Nature Struct. Biol. 6, 351–358 (1999)

    Article  CAS  PubMed  Google Scholar 

  39. Erman, B. A fast approximate method of identifying paths of allosteric communication in proteins. Proteins Struct. Funct. Bioinf. 81, 1097–1101 (2013)

    Article  CAS  Google Scholar 

  40. Tang, S. et al. Predicting allosteric communication in myosin via a pathway of conserved residues. J. Mol. Biol. 373, 1361–1373 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. England, J. L. Allostery in protein domains reflects a balance of steric and hydrophobic effects. Structure 19, 967–975 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. VanWart, A. T., Eargle, J., Luthey-Schulten, Z. & Amaro, R. E. Exploring residue component contributions to dynamical network models of allostery. J. Chem. Theory Comput. 8, 2949–2961 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lockless, S. W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999)

    Article  CAS  PubMed  Google Scholar 

  44. Süel, G. M., Lockless, S. W., Wall, M. A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nature Struct. Biol. 10, 59–69 (2003)

    Article  PubMed  CAS  Google Scholar 

  45. Colombo, M. F., Rau, D. C. & Parsegian, V. A. Protein solvation in allosteric regulation: a water effect on hemoglobin. Science 256, 655–659 (1992)Groundbreaking experimental work demonstrating the large energetic effects of hydration on haemoglobin conformation and thus protein allostery.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Elber, R. Simulations of allosteric transitions. Curr. Opin. Struct. Biol. 21, 167–172 (2011)

    Article  CAS  PubMed  Google Scholar 

  47. Weinkam, P., Chen, Y. C., Pons, J. & Sali, A. Impact of mutations on the allosteric conformational equilibrium. J. Mol. Biol. 425, 647–661 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. Marcos, E., Crehuet, R. & Bahar, I. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members. PLOS Comput. Biol. 7, e1002201 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Silva, M. M., Rogers, P. H. & Arnone, A. A third quaternary structure of human hemoglobin A at 1.7-Å resolution. J. Biol. Chem. 267, 17248–17256 (1992)

    Article  CAS  PubMed  Google Scholar 

  50. Cooper, A. & Dryden, D. T. F. Allostery without conformational change. Eur. Biophys. J. 11, 103–109 (1984)The first explicit articulation of dynamic allostery, demonstrating the theoretical relevance of an entirely entropic energetic contribution to biological function.

    Article  CAS  PubMed  Google Scholar 

  51. Fraser, J. S. et al. Hidden alternative structures of proline isomerase essential for catalysis. Nature 462, 669–673 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lukin, J. A. et al. Quaternary structure of hemoglobin in solution. Proc. Natl Acad. Sci. USA 100, 517–520 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sekhar, A. & Kay, L. E. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc. Natl Acad. Sci. USA 110, 12867–12874 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wand, A. J. The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation. Curr. Opin. Struct. Biol. 23, 75–81 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. Manley, G., Rivalta, I. & Loria, J. P. Solution NMR and computational methods for understanding protein allostery. J. Phys. Chem. B 117, 3063–3073 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, J. et al. Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888 (2006)

    Article  CAS  PubMed  Google Scholar 

  57. Uversky, V. N. Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Biol. 43, 1090–1103 (2011)

    Article  CAS  PubMed  Google Scholar 

  58. Uversky, V. N., Oldfield, C. J. & Dunker, A. K. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit. 18, 343–384 (2005)

    Article  CAS  PubMed  Google Scholar 

  59. Wright, P. E. Intrinsically unstructured proteins: re-assessing the structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999)

    Article  CAS  PubMed  Google Scholar 

  60. Tompa, P. Unstructural biology coming of age. Curr. Opin. Struct. Biol. 21, 419–425 (2011)

    Article  CAS  PubMed  Google Scholar 

  61. Hilser, V. J. & Thompson, E. B. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl Acad. Sci. USA 104, 8311–8315 (2007)The first paper to propose and demonstrate that intrinsic disorder can be used by proteins to mediate allosteric coupling.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luque, I. & Freire, E. Structural parameterization of the binding enthalpy of small ligands. Proteins 49, 181–190 (2002)

    Article  CAS  PubMed  Google Scholar 

  63. Li, Z., Raychaudhuri, S. & Wand, A. J. Insights into the local residual entropy of proteins provided by NMR relaxation. Protein Sci. 5, 2647–2650 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, D. & Kay, L. E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263, 369–382 (1996)

    Article  CAS  PubMed  Google Scholar 

  65. Igumenova, T. I., Frederick, K. K. & Wand, A. J. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev. 106, 1672–1699 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jarymowycz, V. A. & Stone, M. J. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 106, 1624–1671 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. Frederick, K. K., Marlow, M. S., Valentine, K. G. & Wand, A. J. Conformational entropy in molecular recognition by proteins. Nature 448, 325–329 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, A. L., Kinnear, S. A. & Wand, A. J. Redistribution and loss of side chain entropy upon formation of a calmodulin–peptide complex. Nature Struct. Biol. 7, 72–77 (2000)

    Article  CAS  PubMed  Google Scholar 

  69. Palmer, A. G., Kroenke, C. D. & Loria, J. P. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 339, 204–238 (2001)

    Article  CAS  PubMed  Google Scholar 

  70. Marlow, M. S., Dogan, J., Frederick, K. K., Valentine, K. G. & Wand, A. J. The role of conformational entropy in molecular recognition by calmodulin. Nature Chem. Biol. 6, 352–358 (2010)

    Article  CAS  Google Scholar 

  71. Igumenova, T. I., Lee, A. L. & Wand, A. J. Backbone and side chain dynamics of mutant calmodulin–peptide complexes. Biochemistry 44, 12627–12639 (2005)

    Article  CAS  PubMed  Google Scholar 

  72. Laine, O., Streaker, E. D., Nabavi, M., Fenselau, C. C. & Beckett, D. Allosteric signaling in the biotin repressor occurs via local folding coupled to global dampening of protein dynamics. J. Mol. Biol. 381, 89–101 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodgers, T. L. et al. Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors. PLoS Biol. 11, e1001651 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schrank, T. P., Bolen, D. W. & Hilser, V. J. Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins. Proc. Natl Acad. Sci. USA 106, 16984–16989 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gao, J. & Xu, D. Correlation between posttranslational modification and intrinsic disorder in protein. Pac. Symp. Biocomput. 94–103 (2012)

  76. Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA 103, 8390–8395 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997)

    Article  CAS  PubMed  Google Scholar 

  79. Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Pan, H., Lee, J. C. & Hilser, V. J. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl Acad. Sci. USA 97, 12020–12025 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bray, D. & Duke, T. A. Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct. 33, 53–73 (2004)

    Article  CAS  PubMed  Google Scholar 

  82. Luque, I., Leavitt, S. A. & Freire, E. The linkage between protein folding and functional cooperativity: two sides of the same coin? Annu. Rev. Biophys. Biomol. Struct. 31, 235–256 (2002)

    Article  CAS  PubMed  Google Scholar 

  83. Ackers, G. K., Johnson, A. D. & Shea, M. A. Quantitative model for gene regulation by the lambda phage repressor. Proc. Natl Acad. Sci. USA 79, 1129–1133 (1982)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Motlagh, H. N. & Hilser, V. J. Agonsim/antagonism switching in allosteric ensembles. Proc. Natl Acad. Sci. USA 109, 4134–4139 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bai, F. et al. Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327, 685–689 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Gekko, K., Obu, N., Li, J. & Lee, J. C. A linear correlation between the energetics of allosteric communication and protein flexibility in the Escherichia coli cyclic AMP receptor protein revealed by mutation-induced changes in compressibility and amide hydrogen-deuterium exchange. Biochemistry 43, 3844–3852 (2004)

    Article  CAS  PubMed  Google Scholar 

  87. Fisher, C. K. & Stultz, C. M. Constructing ensembles for intrinsically disordered proteins. Curr. Opin. Struct. Biol. 21, 426–431 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Forman-Kay, J. D. & Mittag, T. From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure 21, 1492–1499 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mittag, T. & Forman-Kay, J. D. Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol. 17, 3–14 (2007)

    Article  CAS  PubMed  Google Scholar 

  90. Bernadó, P. et al. A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc. Natl Acad. Sci. USA 102, 17002–17007 (2005)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jensen, M. R. et al. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure 17, 1169–1185 (2009)

    Article  CAS  PubMed  Google Scholar 

  92. Cavalli, A., Salvatella, X., Dobson, C. M. & Vendruscolo, M. Protein structure determination from NMR chemical shifts. Proc. Natl Acad. Sci. USA 104, 9615–9620 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Clore, G. M. Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement. Mol. Biosyst. 4, 1058–1069 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lindorff-Larsen, K., Best, R. B., Depristo, M. A., Dobson, C. M. & Vendruscolo, M. Simultaneous determination of protein structure and dynamics. Nature 433, 128–132 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Tang, C., Louis, J. M., Aniana, A., Suh, J. Y. & Clore, G. M. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature 455, 693–696 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yu, B. et al. Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1. Cell 140, 246–256 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fraser, J. S. et al. Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc. Natl Acad. Sci. USA 108, 16247–16252 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Burnley, T. B., Afonine, P. V., Adams, P. D. & Gros, P. Modelling dynamics in protein crystal structures by ensemble refinement. eLife 1, e00311 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Penczek, P. A., Kimmel, M. & Spahn, C. M. T. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure 19, 1582–1590 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012)

    Article  CAS  PubMed  Google Scholar 

  101. Dror, R. O. et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503, 295–299 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Qian, H. Cyclic conformational modification of an enzyme: serial engagement, energy relay, hysteretic enzyme, and Fischer’s hypothesis. J. Phys. Chem. B 114, 16105–16111 (2010)

    Article  CAS  PubMed  Google Scholar 

  103. Ward, A. B., Sali, A. & Wilson, I. A. Integrative structural biology. Science 339, 913–915 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Andreeva, A. et al. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 36, D419–D425 (2008)

    Article  CAS  PubMed  Google Scholar 

  105. Cesareni, G., Gimona, M., Sudol, M. & Yaffe, M. Modular Protein Domains (Wiley-VCH, 2005)

    Google Scholar 

  106. Loh, S. N. & Ha, J. H. Protein conformational switches: from nature to design. Chemistry 18, 7984–7999 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Choi, J. H., San, A. & Ostermeier, M. Non-allosteric enzyme switches possess larger effector-induced changes in thermodynamic stability than their non-switch analogs. Protein Sci. 22, 475–485 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zayner, J. P., Antoniou, C., French, A. R., Hause, R. J., Jr & Sosnick, T. R. Investigating models of protein function and allostery with a widespread mutational analysis of a light activated protein. Biophys. J. 105, 1027–1036 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation grant MCB1330211 and by National Institutes of Health grants GM63747 and T32-GM008403.

Author information

Authors and Affiliations

Authors

Contributions

V.J.H. conceived the manuscript; H.N.M., J.O.W., J.L. and V.J.H. wrote and edited the manuscript.

Corresponding author

Correspondence to Vincent J. Hilser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Motlagh, H., Wrabl, J., Li, J. et al. The ensemble nature of allostery. Nature 508, 331–339 (2014). https://doi.org/10.1038/nature13001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13001

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing