Abstract
Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium1, directly probes the explosion asymmetries. Cassiopeia A is a young2, nearby3, core-collapse4 remnant from which 44Ti emission has previously been detected5,6,7,8 but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission9, from optical light echoes10, and from jet-like features seen in the X-ray11 and optical12 ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Magkotsios, G. et al. Trends in 44Ti and 56Ni from core-collapse supernovae. Astrophys. J. Suppl. Ser. 191, 66–95 (2010)
Thorstensen, J. R., Fesen, R. A. & van den Bergh, S. The expansion center and dynamical age of the galactic supernova remnant Cassiopeia A. Astrophys. J. 122, 297–307 (2001)
Reed, J. E., Hester, J. J., Fabian, A. C. & Winkler, P. F. The three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys. J. 440, 706–721 (1995)
Krause, O. et al. The Cassiopeia A supernova was of type IIb. Science 320, 1195–1197 (2008)
Iyudin, A. F. et al. COMPTEL observations of Ti-44 gamma-ray line emission from Cas A. Astron. Astrophys. 284, L1–L4 (1994)
Vink, J. et al. Detection of the 67.9 and 78.4 keV lines associated with the radioactive decay of 44Ti in Cassiopeia A. Astrophys. J. 560, L79–L82 (2001)
Rothschild, R. E. & Lingenfelter, R. E. Limits to the Cassiopeia A 44Ti line flux and constraints on the ejecta energy and the compact source. Astrophys. J. 582, 257–261 (2003)
Renaud, M. et al. The signature of 44Ti in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL. Astrophys. J. 647, L41–L44 (2006)
Nagataki, S., Hashimoto, M.-a., Sato, K., Yamada, S. & Mochizuki, Y. S. The high ratio of 44Ti/56Ni in Cassiopeia A and the axisymmetric collapse-driven supernova explosion. Astrophys. J. 492, L45–L48 (1998)
Rest, A. et al. Direct confirmation of the asymmetry of the Cas A supernova with light echoes. Astrophys. J. 732, 3 (2011)
Hwang, U. et al. A million second Chandra view of Cassiopeia A. Astrophys. J. 615, L117–L120 (2004)
Fesen, R. A. et al. The expansion asymmetry and age of the Cassiopeia A supernova remnant. Astrophys. J. 645, 283–292 (2006)
Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181–235 (1995)
Ahmad, I. et al. Improved measurement of the 44Ti half-life from a 14-year long study. Phys. Rev. C 74, 065803 (2006)
Harrison, F. A. et al. The Nuclear Spectroscopic Telescope ARray (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013)
Wongwathanarat, A., Janka, H.-T. & Müller, E. Hydrodynamical neutron star kicks in three dimensions. Astrophys. J. 725, L106–L110 (2010)
Gotthelf, E. V. et al. Chandra detection of the forward and reverse shocks in Cassiopeia A. Astrophys. J. 552, L39–L43 (2001)
Hwang, U. & Laming, J. M. A. Chandra X-ray survey of ejecta in the Cassiopeia A supernova remnant. Astrophys. J. 746, 130 (2012)
Chevalier, R. A. & Oishi, J. Cassiopeia A and its clumpy presupernova wind. Astrophys. J. 593, L23–L26 (2003)
Hwang, U. & Laming, J. M. Where was the iron synthesized in Cassiopeia A? Astrophys. J. 597, 362–373 (2003)
Isensee, K. et al. The three-dimensional structure of interior ejecta in Cassiopeia A at high spectral resolution. Astrophys. J. 725, 2059–2070 (2010)
Li, H., McCray, R. & Sunyaev, R. A. Iron, cobalt, and nickel in SN 1987A. Astrophys. J. 419, 824–836 (1993)
Shigeyama, T. et al. Theoretical light curves of Type IIb supernova 1993J. Astrophys. J. 420, 341–347 (1994)
Hachisu, I., Matsuda, T., Nomoto i, K. & Shigeyama, T. Nonlinear growth of Rayleigh-Taylor instabilities and mixing in SN 1987A. Astrophys. J. 358, L57–L61 (1990)
Nomoto i, K., Iwamoto, K. & Suzuki, T. The evolution and explosion of massive binary stars and Type Ib-Ic-IIb-IIL supernovae. Phys. Rep. 256, 173–191 (1995)
Hungerford, A. L., Fryer, C. L. & Warren, M. S. Gamma-ray lines from asymmetric supernovae. Astrophys. J. 594, 390–403 (2003)
Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012)
Fryer, C. L. & Heger, A. Core-collapse simulations of rotating stars. Astrophys. J. 541, 1033–1050 (2000)
Fryer, C. L. & Young, P. A. Late-time convection in the collapse of a 23 star. Astrophys. J. 659, 1438–1448 (2007)
Blondin, J. M., Mezzacappa, A. & DeMarino, C. Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys. J. 584, 971–980 (2003)
Harrison, F. A. et al. The Nuclear Spectroscopic Telescope ARray (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013)
Georgakakis, A., Nandra, K., Laird, E. S., Aird, J. & Trichas, M. A new method for determining the sensitivity of X-ray imaging observations and the X-ray number counts. Mon. Not. R. Astron. Soc. 388, 1205–1213 (2008)
Thorstensen, J. R., Fesen, R. A. & van den Bergh, S. The expansion center and dynamical age of the galactic supernova remnant Cassiopeia A. Astrophys. J. 122, 297–307 (2001)
Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K. & Witzel, A. The absolute spectrum of CAS A - an accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106 (1977)
Renaud, M. et al. The signature of 44Ti in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL. Astrophys. J. 647, L41–L44 (2006)
Reichart, D. E. & Stephens, A. W. The fading of supernova remnant Cassiopeia A from 38 MHz to 16.5 GHz from 1949 to 1999 with new observations at 1405 MHz. Astrophys. J. 537, 904–908 (2000)
Laming, J. M. in Solar and Galactic Composition (ed. Wimmer-Schweingruber, R. F. ) 411–416 (AIP, 2001)
Magkotsios, G. et al. Trends in 44Ti and 56Ni from core-collapse supernovae. Astrophys. J. Suppl. Ser. 191, 66–95 (2010)
Young, P. A. et al. Constraints on the progenitor of Cassiopeia A. Astrophys. J. 640, 891–900 (2006)
Fryer, C. L., Rockefeller, G. & Warren, M. S. SNSPH: a parallel three-dimensional smoothed particle radiation hydrodynamics code. Astrophys. J. 643, 292–305 (2006)
Ellinger, C. I., Rockefeller, G., Fryer, C. L., Young, P. A. & Park, S. First simulations of core- collapse supernovae to supernova remnants with SNSPH. Preprint at http://arxiv.org/abs/1305.4137 (2013)
Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993)
Laming, J. M., Hwang, U., Radics, B., Lekli, G. & Takacs, E. The polar regions of Cassiopeia A: the aftermath of a gamma-ray burst? Astrophys. J. 644, 260–273 (2006)
Wheeler, J. C. & Akiyama, S. Asymmetric supernovae and gamma-ray bursts. New Astron. Rev. 54, 183–190 (2010)
Acknowledgements
This work was supported by NASA under grant no. NNG08FD60C, and made use of data from the Nuclear Spectroscopic Telescope Array (NuSTAR) mission, a project led by Caltech, managed by the Jet Propulsion Laboratory and funded by NASA. We thank the NuSTAR operations, software and calibration teams for support with execution and analysis of these observations.
Author information
Authors and Affiliations
Contributions
B.W.G.: reduction and modelling of the NuSTAR Cas A observations, interpretation, manuscript preparation. F.A.H.: NuSTAR principal investigator, observation planning, interpretation of results and manuscript preparation. S.E.B.: interpretation, manuscript review. S.P.R.: interpretation, manuscript preparation and review. C.L.F.: interpretation of results, manuscript review. K.K.M.: observation planning, data analysis, manuscript review. D.R.W.: background modelling, data analysis, manuscript review. A.Z.: background modelling, manuscript review. C.I.E.: supernova simulations, manuscript review. H.A.: image deconvolution, manuscript review. T.K.: detector modelling, data analysis, manuscript review. H.M., V.R., P.H.M.: detector production, response modelling, manuscript review. M.J.P.: optics calibration, manuscript review. S.P., M.P.: analysis software, calibration, manuscript review. K.F.: observation planning. F.E.C.: optics production and calibration, manuscript review. W.W.C.: optics and instrument production and response, observation planning, manuscript review. C.J.H.: optics production and response, interpretation, manuscript review. J.E.K.: optics production and response, manuscript review. N.J.W.: manuscript review, calibration. W.W.Z.: optics production and response, manuscript review. D.M.A., D.B., P.G., A.H., V.M.K., D.S.: science planning, manuscript review.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 The background-subtracted image of Cas A in the 65–70-keV band containing the 68-keV 44Ti line showing the significance of the 44Ti knots.
The data have been smoothed with a 20′′-radius top-hat function (dashed circle) and are shown with 3σ and 4σ significance contours (green). In addition to the features shown in Fig. 1, here we also show locations of the forward (R ≈ 150′′) and reverse (R ≈ 100′′) shocks17 (white dashed circles), for context. The 44Ti clearly resolves into several significantly identified clumps that are non-uniformly distributed around the centre of expansion.
Extended Data Figure 2 The radial profile of the 44Ti emission.
We collect each photon in annular bins of increasing radius in the plane of the sky without any spatial smoothing. a, Radial profile of the 44Ti data in the 65–70-keV band (black) and the radial profile expected from the background images (red), scaled by the area of each annulus and shown in units of counts per square arcsec. b, Background-subtracted radial profile. c, Percentage of enclosed flux in annuli of increasing radii as observed on the plane of the sky. All error bars are 1σ.
Extended Data Figure 3 Simulated 44Ti intensity contours for a symmetric explosion and a bipolar explosion.
The vertical line shows a 4′ scale (note the different spatial scale between the symmetric (left) and bipolar (right) explosions). The non-uniformities in the observed 44Ti spatial distribution rule out the purely symmetric explosion, even with extensive mixing. Similarly, the presence of 44Ti away from the jet axis argues against the rapidly rotating progenitor that produced the bipolar explosion. We therefore argue that the explosion that produced Cas A is somewhere between these two extremes and that this is the first clear example of a low-mode convection explosion.
Extended Data Figure 4 The background spectral model fit for one of the Cas A epochs.
Shown are the data from the background regions (black points with 1σ error bars included but not visible), the instrumental background (green), the CXB components (blue, dashed is the focused CXB component), the phenomenological ‘source’ model (magenta) and the total background model (red). Inset, background spectrum near the 44Ti emission lines showing the features that we model. The broad lines at 65 and 75 keV are probably neutron-capture emission features, and the narrow line near 67 keV is an internal activation line in the CdZnTe detectors. See Methods for more details.
Extended Data Figure 5 The significant signals observed in the spectrum near 68 and 78 keV.
Top, the black points (1σ error bars) are the data shown after the background model spectrum has been subtracted from the source data. The red continuum is the best-fit power-law continuum over the 20–80-keV band pass. Bottom, the contribution to the C-stat statistics for each spectral bin. The large signals near 68 and 78 keV (the 44Ti emission lines) suggest that an additional spectral component is required. See Methods for details.
Rights and permissions
About this article
Cite this article
Grefenstette, B., Harrison, F., Boggs, S. et al. Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in Cassiopeia A. Nature 506, 339–342 (2014). https://doi.org/10.1038/nature12997
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature12997
This article is cited by
-
Neutrino heating re-starts the stalled engine
Nature Astronomy (2021)
-
High-entropy ejecta plumes in Cassiopeia A from neutrino-driven convection
Nature (2021)
-
Radioactive isotopes in the interstellar medium
Astrophysics and Space Science (2021)
-
PHEMTO: the polarimetric high energy modular telescope observatory
Experimental Astronomy (2021)
-
Understanding the origin of the positron annihilation line and the physics of supernova explosions
Experimental Astronomy (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.