Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas

Abstract

The preparation of cold molecules is of great importance in many contexts, such as fundamental physics investigations1,2, high-resolution spectroscopy of complex molecules3,4,5, cold chemistry6,7 and astrochemistry8. One versatile and widely applied method to cool molecules is helium buffer-gas cooling in either a supersonic beam expansion9,10 or a cryogenic trap environment11,12. Another more recent method applicable to trapped molecular ions relies on sympathetic translational cooling, through collisional interactions with co-trapped, laser-cooled atomic ions, into spatially ordered structures called Coulomb crystals, combined with laser-controlled internal-state preparation6,7,13,14,15,16,17,18,19,20,21,22,23. Here we present experimental results on helium buffer-gas cooling of the rotational degrees of freedom of MgH+ molecular ions, which have been trapped and sympathetically cooled13 in a cryogenic linear radio-frequency quadrupole trap. With helium collision rates of only about ten per second—that is, four to five orders of magnitude lower than in typical buffer-gas cooling settings—we have cooled a single molecular ion to a rotational temperature of  kelvin, the lowest such temperature so far measured. In addition, by varying the shape of, or the number of atomic and molecular ions in, larger Coulomb crystals, or both, we have tuned the effective rotational temperature from about 7 kelvin to about 60 kelvin by changing the translational micromotion energy of the ions24. The extremely low helium collision rate may allow for sympathetic sideband cooling of single molecular ions, and eventually make quantum-logic spectroscopy25 of buffer-gas-cooled molecular ions feasible. Furthermore, application of the present cooling scheme to complex molecular ions should enable single- or few-state manipulations of individual molecules of biological interest4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial, rotational and collisional speed distributions.
Figure 2: Rotational ground-state populations and temperatures.
Figure 3: Rotational temperature versus collisional temperature.
Figure 4: Cooling dynamics.

Similar content being viewed by others

References

  1. Hudson, E. R., Lewandowski, H. J., Sawyer, B. C. & Ye, J. Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Phys. Rev. Lett. 96, 143004 (2006)

    Article  ADS  Google Scholar 

  2. Hudson, J. J. et al. Improved measurement of the shape of the electron. Nature 473, 493–496 (2011)

    Article  ADS  CAS  Google Scholar 

  3. Kamrath, M. Z., Relph, R. A., Guasco, T. L., Leavitt, C. M. & Johnson, M. A. Vibrational predissociation spectroscopy of the H2-tagged mono- and dicarboxylate anions of dodecanedioic acid. Int. J. Mass Spectrom. 300, 91–98 (2011)

    Article  CAS  Google Scholar 

  4. Rizzo, T. R., Park, Y. D., Peteanu, L. A. & Levy, D. H. The electronic spectrum of the amino acid tryptophan in the gas phase. J. Chem. Phys. 84, 2534–2541 (1986)

    Article  ADS  CAS  Google Scholar 

  5. Stearns, J. A. et al. Conformation-specific spectroscopy and photodissociation of cold, protonated tyrosine and phenylalanine. J. Am. Chem. Soc. 129, 11814–11820 (2007)

    Article  CAS  Google Scholar 

  6. Willitsch, S., Bell, M. T., Gingell, A. D. & Softley, T. P. Chemical applications of laser-and sympathetically-cooled ions in ion traps. Phys. Chem. Chem. Phys. 10, 7200–7210 (2008)

    Article  CAS  Google Scholar 

  7. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009)

    Article  ADS  Google Scholar 

  8. Smith, I. W. M. Low Temperatures and Cold Molecules (Imperial College Press, 2008)

    Book  Google Scholar 

  9. Hutzler, N. R. A cryogenic beam of refractory, chemically reactive molecules with expansion cooling. Phys. Chem. Chem. Phys. 13, 18976–18985 (2011)

    Article  CAS  Google Scholar 

  10. Scoles, G., Bassi, D., Buck, U. & Laine, D. C. Atomic and Molecular Beam Methods Vol. 1 (Oxford Univ. Press, 1988)

    Google Scholar 

  11. Gerlich, D. Ion-neutral collisions in a 22-pole trap at very low energies. Phys. Scr. T59, 256–263 (1995)

    Article  ADS  Google Scholar 

  12. Weinstein, J. D., deCarvalho, R., Guillet, T., Friedrich, B. & Doyle, J. M. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148–150 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Mølhave, K. & Drewsen, M. Formation of translationally cold MgH+ and MgD+ molecules in an ion trap. Phys. Rev. A 62, 011401(R) (2000)

    Article  ADS  Google Scholar 

  14. Staanum, P. F., Høbjerre, K., Wester, R. & Drewsen, M. Probing isotope effects in chemical reactions using single ions. Phys. Rev. Lett. 100, 243003 (2008)

    Article  ADS  Google Scholar 

  15. Højbjerre, K. et al. Consecutive photodissociation of a single complex molecular ion. Phys. Rev. A 77, 030702(R) (2008)

    Article  ADS  Google Scholar 

  16. Zipkes, C., Palzer, S., Sias, C. & Köhl, M. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Schmid, S., Härter, A. & Denschlag, J. H. Dynamics of a cold trapped ion in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010)

    Article  ADS  Google Scholar 

  18. Staanum, P. F., Højbjerre, K., Skyt, P. S., Hansen, A. K. & Drewsen, M. Rotational laser cooling of vibrationally and translationally cold molecular ions. Nature Phys. 6, 271–274 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Schneider, T., Roth, B., Duncker, H., Ernsting, I. & Schiller, S. All-optical preparation of molecular ions in the rovibrational ground state. Nature Phys. 6, 275–278 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Tong, X., Winney, A. H. & Willitsch, S. Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization. Phys. Rev. Lett. 105, 143001 (2010)

    Article  ADS  Google Scholar 

  21. Ostendorf, A. et al. Sympathetic cooling of complex molecular ions to millikelvin temperatures. Phys. Rev. Lett. 97, 243005 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Hansen, A. K., Sørensen, M. A., Staanum, P. F. & Drewsen, M. Single-ion recycling reactions. Angew. Chem. Int. Ed. 51, 7960–7962 (2012)

    Article  CAS  Google Scholar 

  23. Versolato, O. O. et al. Decay rate measurement of the first vibrationally excited state of MgH+ in a cryogenic Paul trap. Phys. Rev. Lett. 111, 053002 (2013)

    Article  ADS  CAS  Google Scholar 

  24. Blümel, R., Kappler, C., Quint, W. & Walther, H. Chaos and order of laser-cooled ions in a Paul trap. Phys. Rev. A 40, 808–823 (1989)

    Article  ADS  Google Scholar 

  25. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Hlavenka, P. et al. Absolute photodetachment cross section measurements of the O- and OH- anion. J. Chem. Phys. 130, 061105 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Schwarz, M. et al. Cryogenic linear Paul trap for cold highly charged ion experiments. Rev. Sci. Instrum. 83, 083115 (2012)

    Article  ADS  CAS  Google Scholar 

  28. Schlemmer, S., Kuhn, T., Lescop, E. & Gerlich, D. Laser excited N2+ in a 22-pole ion trap: experimental studies of rotational relaxation processes. Int. J. Mass Spectrom. 185–187, 589–602 (1999)

    Article  Google Scholar 

  29. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Rellergert, W. G. et al. Evidence for sympathetic vibrational cooling of translationally cold molecules. Nature 495, 490–494 (2013)

    Article  ADS  CAS  Google Scholar 

  31. Vogelius, I. S., Madsen, L. B. & Drewsen, M. Probabilistic state preparation of a single molecular ion by projection measurement. J. Phys. B 39, S1259–S1265 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

M.D. appreciates generous support through the Danish National Research Foundation Center for Quantum Optics – QUANTOP; The Danish Agency for Science, Technology and Innovation; the Carlsberg Foundation; the Lundbeck Foundation; and the European Commission under the Seventh Framework Programme FP7 GA 607491 COMIQ. O.O.V., M.S., L.K. and A.W. acknowledge funding from STSM travel grants from COST-Action IOTA. Finally, the MPIK mechanical workshops have been of crucial importance for the construction of the cryogenic trap.

Author information

Authors and Affiliations

Authors

Contributions

L.K., O.O.V., A.K.H., S.B.K. and A.G. contributed equally to the work by carrying out the experiments, taking part in the data analysis and writing the manuscript. M.S., A.W., J.U. and J.R.C.L.-U. contributed significantly by designing and constructing the cryogenically cooled trap. M.D. contributed to the trap design, had the idea for the experiment, devised the experimental protocol, led the data analysis and wrote most of the manuscript.

Corresponding author

Correspondence to M. Drewsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text. (PDF 409 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, A., Versolato, O., Kłosowski, Ł. et al. Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas. Nature 508, 76–79 (2014). https://doi.org/10.1038/nature12996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12996

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing