Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The remnant of a merger between two dwarf galaxies in Andromeda II


Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way1 or Andromeda2. At similar mass scales, around 1011 solar masses in stars, further evidence of merging activity is also ample3,4,5. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation6, but have hitherto not been seen for galaxies with less than about 109 solar masses in stars7,8. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 107 solar masses in stars9. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis10. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Kinematic detection of a stream in And II.
Figure 2: The stream reproduced by an orbit in a spherical potential.


  1. 1

    Belokurov, V. et al. The Field of Streams: Sagittarius and its siblings. Astrophys. J. 642, L137–L140 (2006)

    ADS  Article  Google Scholar 

  2. 2

    Ibata, R., Irwin, M., Lewis, G., Ferguson, A. & Tanvir, N. A giant stream of metal-rich stars in the halo of the galaxy M31. Nature 412, 49–52 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Martínez-Delgado, D. et al. The ghost of a dwarf galaxy: fossils of the hierarchical formation of a nearby spiral galaxy NGC 5907. Astrophys. J. 689, 184–193 (2008)

    ADS  Article  Google Scholar 

  4. 4

    Chonis, S. et al. A petal of the sunflower: photometry of the stellar tidal stream in the halo of Messier 63 (NGC 5055). Astron. J. 142, 166–181 (2011)

    ADS  Article  Google Scholar 

  5. 5

    Martínez-Delgado, D. et al. Discovery of a giant stellar tidal stream around the disk galaxy NGC 4013. Astrophys. J. 692, 955–963 (2009)

    ADS  Article  Google Scholar 

  6. 6

    Fakhouri, O., Ma, C.-P. & Boylan-Kolchin, M. The merger rates and mass assembly histories of dark matter haloes in the two Millennium Simulations. Mon. Not. R. Astron. Soc. 406, 2267–2278 (2010)

    ADS  Article  Google Scholar 

  7. 7

    Rich, R. M. et al. A tidally distorted dwarf galaxy near NGC 4449. Nature 482, 192–194 (2012)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Martínez-Delgado, D. et al. Dwarfs gobbling dwarfs: a stellar tidal stream around NGC 4449 and hierarchical galaxy formation on small scales. Astrophys. J. 748, L24 (2012)

    ADS  Article  Google Scholar 

  9. 9

    McConnachie, A. W., Arimoto, N. & Irwin, M. J. Deconstructing galaxies: a Suprime-Cam survey of Andromeda II. Mon. Not. R. Astron. Soc. 379, 379–392 (2007)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ho, N. et al. Stellar kinematics of the Andromeda II dwarf spheroidal galaxy. Astrophys. J. 758, 124–136 (2012)

    ADS  Article  Google Scholar 

  11. 11

    McConnachie, A. W. & Irwin, M. J. Structural properties of the M31 dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 365, 1263–1276 (2006)

    ADS  Article  Google Scholar 

  12. 12

    McConnachie, A. W. et al. A trio of new local group galaxies with extreme properties. Astrophys. J. 688, 1009–1020 (2008)

    ADS  Article  Google Scholar 

  13. 13

    Watkins, L. L., Evans, N. W. & van der Ven, G. A census of orbital properties of the M31 satellites. Mon. Not. R. Astron. Soc. 430, 971–985 (2013)

    ADS  Article  Google Scholar 

  14. 14

    Koposov, S. E. et al. Accurate stellar kinematics at faint magnitudes: application to the Botes I dwarf spheroidal galaxy. Astrophys. J. 736, 146 (2011)

    ADS  Article  Google Scholar 

  15. 15

    Collins, M. L. M. et al. A kinematic study of the Andromeda dwarf spheroidal system. Astrophys. J. 768, 172 (2013)

    ADS  Article  Google Scholar 

  16. 16

    Shaya, E. J. & Tully, R. B. The formation of Local Group planes of galaxies. Mon. Not. R. Astron. Soc. 436, 2096–2119 (2013)

    ADS  Article  Google Scholar 

  17. 17

    Walker, M. in Planets, Stars and Stellar Systems Vol. 5 (eds Oswalt, T. D. & Gilmore, G. ) 1039–1089 (Springer, 2013)

    Book  Google Scholar 

  18. 18

    Amorisco, N. C. & Evans, N. W. Phase-space models of the dwarf spheroidals. Mon. Not. R. Astron. Soc. 411, 2118–2136 (2011)

    ADS  Article  Google Scholar 

  19. 19

    Kleyna, J. Wilkinson, M. I., Gilmore, G. & Evans, N. W. A dynamical fossil in the Ursa Minor dwarf spheroidal. Astrophys. J. 588, L21–L24 (2003)

    ADS  Article  Google Scholar 

  20. 20

    Sánchez-Salcedo, F. J. & Lora, V. The survival of dynamical fossils in dwarf spheroidal galaxies in conventional and modified dynamics. Mon. Not. R. Astron. Soc. 407, 1135–1147 (2010)

    ADS  Article  Google Scholar 

  21. 21

    Belokurov, V. et al. Precession of the Sagittarius stream. Mon. Not. R. Astron. Soc. 437, 116–131 (2014)

    ADS  Article  Google Scholar 

  22. 22

    Coleman, M. et al. Shell structure in the Fornax dwarf spheroidal. Astron. J. 127, 832–839 (2004)

    ADS  Article  Google Scholar 

  23. 23

    Amorisco, N. C. & Evans, N. W. A troublesome past: chemodynamics of the Fornax dwarf spheroidal. Astrophys. J. 756, L2 (2012)

    ADS  Article  Google Scholar 

  24. 24

    Irwin, M. & Hatzidimitriou, D. Structural parameters for the Galactic dwarf spheroidals. Mon. Not. R. Astron. Soc. 277, 1354–1378 (1995)

    ADS  Article  Google Scholar 

  25. 25

    Palma, C. et al. Exploring halo substructure with giant stars. IV. The extended structure of the Ursa Minor dwarf spheroidal galaxy. Astron. J. 125, 1352–1372 (2003)

    ADS  Article  Google Scholar 

  26. 26

    Tremaine, S. in Structure and Evolution of Normal Galaxies (eds Fall, S. M. & Lynden-Bell, D. ) 67–84 (Cambridge Univ. Press, 1981)

    Google Scholar 

  27. 27

    De Rijcke, S., Dejonghe, H., Zeilinger, W. W. & Hau, G. K. T. Dwarf elliptical galaxies with kinematically decoupled cores. Astron. Astrophys. 426, 53–63 (2004)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011)

    ADS  Article  Google Scholar 

  29. 29

    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Irwin for discussions on the photometric properties of And II. The Dark Cosmology Centre is funded by the Danish National Research Foundation. This work was partly supported by Sonderforschungsbereich SFB 881 ‘The Milky Way System’ (subproject A7) of the German Research Foundation.

Author information




N.C.A. performed the candidate selection using methods originally developed with N.W.E., and the subsequent kinematic extraction, together with G.v.d.V. N.C.A., N.W.E. and G.v.d.V. jointly proposed and elaborated the stream model to explain the data. The paper was written by N.C.A., with contributions from N.W.E. and G.v.d.V.

Corresponding author

Correspondence to N. C. Amorisco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Membership selection.

The spectroscopic data set in the plane (vlos, R), shaded according to the probability of each target belonging to the stellar population of And II. Non-member targets with velocities higher than the systematic velocity of And II, vsys = −191.4 ± 0.4, are foreground contaminants from the Milky Way, whereas non-member targets at lower negative velocities are interlopers from the Andromeda halo.

Extended Data Figure 2 Velocity dispersion profile.

Andromeda II has an approximately flat velocity dispersion profile, except for a significant dip near the average projected radius of the stellar stream. Points of different sizes and shading depths refer to different circular annuli sizes (as in the key), and error bars display 68% confidence levels around the most likely central value.

Extended Data Figure 3 Colour–magnitude diagram.

The distribution of the stars belonging to the stream (blue points) and stars in the control sample (red points) in V-band magnitude versus V − I colour.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amorisco, N., Evans, N. & van de Ven, G. The remnant of a merger between two dwarf galaxies in Andromeda II. Nature 507, 335–337 (2014).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links