Letter | Published:

Rapid remobilization of magmatic crystals kept in cold storage

Nature volume 506, pages 480483 (27 February 2014) | Download Citation

  • A Corrigendum to this article was published on 23 April 2014

Abstract

The processes involved in the formation and storage of magma within the Earth’s upper crust are of fundamental importance to volcanology. Many volcanic eruptions, including some of the largest, result from the eruption of components stored for tens to hundreds of thousands of years before eruption1,2,3. Although the physical conditions of magma storage and remobilization are of paramount importance for understanding volcanic processes, they remain relatively poorly known4,5. Eruptions of crystal-rich magma are often suggested to require the mobilization of magma stored at near-solidus conditions6,7,8; however, accumulation of significant eruptible magma volumes has also been argued to require extended storage of magma at higher temperatures7,8,9. What has been lacking in this debate is clear observational evidence linking the thermal (and therefore physical) conditions within a magma reservoir to timescales of storage—that is, thermal histories. Here we present a method of constraining such thermal histories by combining timescales derived from uranium-series disequilibria, crystal sizes and trace-element zoning in crystals. At Mount Hood (Oregon, USA), only a small fraction of the total magma storage duration (at most 12 per cent and probably much less than 1 per cent) has been spent at temperatures above the critical crystallinity (40–50 per cent) at which magma is easily mobilized. Partial data sets for other volcanoes also suggest that similar conditions of magma storage are widespread and therefore that rapid mobilization of magmas stored at near-solidus temperatures is common. Magma storage at low temperatures indicates that, although thermobarometry calculations based on mineral compositions may record the conditions of crystallization, they are unlikely to reflect the conditions of most of the time that the magma is stored. Our results also suggest that largely liquid magma bodies that can be imaged geophysically will be ephemeral features and therefore their detection could indicate imminent eruption.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Uranium-series crystal ages. Rev. Mineral. Geochem. 69, 479–544 (2008)

  2. 2.

    How long does it take to supersize an eruption? Elements 4, 23–28 (2008)

  3. 3.

    Uranium series accessory crystal dating of magmatic processes. Annu. Rev. Earth Planet. Sci. 39, 321–349 (2011)

  4. 4.

    & A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212–215 (2011)

  5. 5.

    , , , & Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012)

  6. 6.

    & Rhyolites and their source mushes across tectonic settings. J. Petrol. 49, 2277–2285 (2008)

  7. 7.

    , & On the longevity of large upper crustal silicic magma reservoirs. Geology 41, 759–762 (2013)

  8. 8.

    , & Crystal-poor versus crystal-rich ignimbrites: a competition between stirring and reactivation. Geology 40, 115–118 (2012)

  9. 9.

    , , & Conditions for the growth of a long-lived shallow crustal magma chamber below Mount Pelee volcano (Martinique, Lesser Antilles Arc). J. Geophys. Res. 113, B07209, (2008)

  10. 10.

    From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009)

  11. 11.

    , & The volcanic-plutonic connection as a stage for understanding crustal magmatism. J. Volcanol. Geotherm. Res. 167, 1–23 (2007)

  12. 12.

    , , , & Magma accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA. Contrib. Mineral. Petrol. 163, 449–465 (2012)

  13. 13.

    , & Caldera size modulated by the yield stress within a crystal-rich magma reservoir. Nature Geosci. 5, 402–405 (2012)

  14. 14.

    & Re-examination of crystal ages in recent Mount St. Helens lavas: implications for magma reservoir processes. Earth Planet. Sci. Lett. 213, 149–167 (2003)

  15. 15.

    , & Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev. Mineral. Geochem. 69, 545–594 (2008)

  16. 16.

    On the interpretation of crystal size distributions in magmatic systems. J. Petrol. 39, 553–599 (1998)

  17. 17.

    , , & Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012)

  18. 18.

    et al. Geologic History of Mount Hood Volcano, Oregon: A Field Trip Guidebook 1–38 (USGS Open File Report 97-263, 1997)

  19. 19.

    , , , & Preferential eruption of andesitic magmas through recharge filtering. Nature Geosci. 3, 631–636 (2010)

  20. 20.

    Control on Eruption Style and Magma Compositions at Mount Hood, Oregon. PhD thesis, Oregon State Univ. (2011)

  21. 21.

    , , & Constraints on crystal storage timescales in mixed magmas: uranium-series disequilibria in plagioclase from Holocene magmas at Mount Hood, Oregon. Earth Planet. Sci. Lett. 317, 317–318 (2012)

  22. 22.

    , , & Controls on long-term low explosivity at andesitic arc volcanoes: insights from Mount Hood, Oregon. J. Volcanol. Geotherm. Res. 219–220, 1–14 (2012)

  23. 23.

    Decryption of igneous rock textures: crystal size distribution tools. Rev. Mineral. Geochem. 69, 623–649 (2008)

  24. 24.

    Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib. Mineral. Petrol. 113, 126–142 (1993)

  25. 25.

    Experimental study of plagioclase rim growth around anorthite seed crystals in rhyodacitic melt. Am. Mineral. 90, 417–427 (2005)

  26. 26.

    , & Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contrib. Mineral. Petrol. 155, 555–570 (2008)

  27. 27.

    , & Modeling of gas-driven magmatic overturn: Tracking of phenocryst dispersal and gathering during magma mixing. Geochem. Geophys. Geosyst. 9, Q07017, (2008)

  28. 28.

    , , & Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria. Nature 437, 534–538 (2005)

  29. 29.

    & Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500, 68–72 (2013)

  30. 30.

    , & Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim. Cosmochim. Acta 67, 2189–2200 (2003)

  31. 31.

    , , , & Open system alkaline magmatism in northern Kenya: evidence from U-series disequilibria and radiogenic isotopes. Contrib. Mineral. Petrol. 131, 364–378 (1998)

  32. 32.

    , , , & U-series disequilibria in young (A.D. 1944) Vesuvius rocks: preliminary implications for magma residence times and volatile addition. J. Volcanol. Geotherm. Res. 82, 97–111 (1998)

  33. 33.

    , & Crustal origin for peralkaline rhyolites from Kenya: Evidence from U-series disequilibria and Th-isotopes. J. Petrol. 38, 277–297 (1997)

  34. 34.

    , & U-series evidence for crustal involvement and magma residence times in the petrogenesis of Parinacota volcano, Chile. Contrib. Mineral. Petrol. 139, 458–469 (2000)

  35. 35.

    , & Evolution of the Laacher See magma chamber: Evidence from SIMS and TIMS measurements of U-Th disequilibria in minerals and glasses. Earth Planet. Sci. Lett. 126, 75–90 (1994)

  36. 36.

    et al. Crystallization ages in coeval silicic magma bodies: 238U-230Th disequilibrium evidence from the Rotoiti and Earthquake Flat eruption deposits, Taupo Volcanic Zone, New Zealand. Earth Planet. Sci. Lett. 206, 441–457 (2003)

  37. 37.

    & in A Volcano Rekindled: The First Year of Renewed Eruption at Mount St. Helens, 2004–2006 (eds , & ) 827–846 (US Geological Survey Professional Paper 1750, 2008)

  38. 38.

    , , & Crystal and magma residence at Kilauea Volcano, Hawaii: 230Th-226Ra dating of the 1955 east rift eruption. Earth Planet. Sci. Lett. 184, 703–718 (2001)

  39. 39.

    , , , & Long magma residence times at an island arc volcano (Soufriere, St. Vincent) in the Lesser Antilles: evidence from 238U-230Th isochron dating. Earth Planet. Sci. Lett. 160, 49–63 (1998)

  40. 40.

    & U-Th disequilibrium and Rb-Sr age constraints on the magmatic evolution of peralkaline rhyolites from Kenya. J. Petrol. 43, 557–577 (2002)

  41. 41.

    et al. Deciphering crust vs. mantle inputs and the timescales of magma genesis at Mount Adams using 238U-230Th disequilibria and Os isotopes. Earth Planet. Sci. Lett. 277, 38–49 (2009)

  42. 42.

    , , & Contrasting timescales of crystallization and magma storage beneath the Aleutian Island arc. Earth Planet. Sci. Lett. 236, 195–210 (2005)

  43. 43.

    et al. Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile. Earth Planet. Sci. Lett. 255, 229–242 (2007)

  44. 44.

    , & 238U- and 232Th-series chronology of phonolite fractionation at Mount Erebus, Antarctica. Geochim. Cosmochim. Acta 56, 1401–1407 (1992)

  45. 45.

    , , , & Rates and timescales of fractional crystallization from U-238-Th-230-Ra-226 disequilibria in trachyte lavas from Longonot volcano, Kenya. J. Petrol. 45, 1747–1776 (2004)

  46. 46.

    & Integrating the uranium-series and elemental diffusion geochronometers in mixed magmas from Volcan Quizapu, Central Chile. J. Petrol. 53, 841–871 (2012)

  47. 47.

    et al. Determining eruption ages and erosion rates of Quaternary basaltic volcanism from combined U-series disequilibria and cosmogenic exposure ages. Geology 35, 471–474 (2007)

  48. 48.

    & Constraints on the nature of the subvolcanic reservoir at South Sister volcano, Oregon from U-series dating combined with sub-crystal trace-element analysis of plagioclase and zircon. Earth Planet. Sci. Lett. 313–314, 1–11 (2012)

  49. 49.

    , , & U-Th-Ra disequilibria and the time scale of fluid transfer and andesite differentiation at Arenal volcano, Costa Rica (1968-2003). J. Volcanol. Geotherm. Res. 157, 147–165 (2006)

  50. 50.

    et al. A complex petrogenesis for an arc magmatic suite, St Kitts, Lesser Antilles. J. Petrol. 48, 3–42 (2007)

  51. 51.

    , , , & U-238-Th-230-Ra-226 disequilibria in andesitic lavas of the last magmatic eruption of Guadeloupe Soufriere, French Antilles: processes and timescales of magma differentiation. Chem. Geol. 246, 181–206 (2007)

  52. 52.

    et al. Rates and processes of potassic magma evolution beneath Sangeang Api Volcano, East Sunda Arc, Indonesia. J. Petrol. 44, 491–515 (2003)

  53. 53.

    , , , & Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordant age information. Earth Planet. Sci. Lett. 214, 279–294 (2003)

  54. 54.

    238U-230Th-226Ra disequilibrium in young Mt. Shasta andesites and dacites. J. Volcanol. Geotherm. Res. 53, 227–238 (1992)

  55. 55.

    & 238U-230Th-226Ra disequilibria in young Mount St. Helens rocks: time constraint for magma formation and crystallization. Earth Planet. Sci. Lett. 107, 475–486 (1991)

  56. 56.

    , & Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc. Earth Planet. Sci. Lett. 174, 265–281 (2000)

  57. 57.

    , , & On the recent bimodal magmatic processes and their rates in the Torfajokull-Veidivotn area, Iceland. Earth Planet. Sci. Lett. 269, 388–398 (2008)

  58. 58.

    Magma dynamics beneath Kameni volcano, Thera, Greece, as revealed by crystal size and shape measurements. J. Volcanol. Geotherm. Res. 70, 37–48 (1996)

  59. 59.

    Crystal size distributions and other quantitative textural measurements in lavas and tuff from Egmont volcano (Mt. Taranaki), New Zealand. Bull. Volcanol. 58, 194–204 (1996)

  60. 60.

    et al. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet. Sci. Lett. 222, 933–946 (2004)

  61. 61.

    Long-period seismicity at Redoubt Volcano, Alaska, 1989–1990 related to magma degassing. J. Volcanol. Geotherm. Res. 75, 321–335 (1997)

  62. 62.

    , & Multiphase petrography of volcanic rocks using element maps: a method applied to Mount St. Helens, 1980-2005. Bull. Volcanol. 74, 1101–1120 (2012)

  63. 63.

    , , , & Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematics. Contrib. Mineral. Petrol. 136, 345–357 (1999)

  64. 64.

    , , & Magma emplacement and remobilization timescales beneath Montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts. J. Petrol. 44, 1413–1431 (2003)

  65. 65.

    , & Rare earth element diffusion in diopside: influence of temperature, pressure and ionic radius, and an elastic model for diffusion in silicates. Contrib. Mineral. Petrol. 141, 687–703 (2001)

  66. 66.

    & The Ra-226 enrichment in oceanic basalts: evidence for melt-cumulate diffusive interaction processes within the oceanic lithosphere. Geochem. Geophys. Geosyst. 5, Q02008, (2004)

  67. 67.

    , , & Diffusive fractionation of U-series radionuclides during mantle melting and shallow-level melt-cumulate interaction. Geochim. Cosmochim. Acta 70, 4797–4812 (2006)

  68. 68.

    Ba diffusion in feldspar. Geochim. Cosmochim. Acta 66, 1641–1650 (2002)

  69. 69.

    , & Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271, 123–134 (2008)

  70. 70.

    , & Phase equilibrium constraints on the viscosity of silicic magmas 1. Volcanic-plutonic comparison. J. Geophys. Res. 103, 27257–27266 (1998)

  71. 71.

    & The nature and occurrence of discrete zoning in plagioclase from recently erupted andesitic volcanic rocks, Montserrat. J. Volcanol. Geotherm. Res. 106, 243–253 (2001)

  72. 72.

    , & Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet. Sci. Lett. 283, 38–47 (2009)

  73. 73.

    Experimental studies of the kinetics and energetics of magma crystallization. Rev. Mineral. Geochem. 69, 9–59 (2008)

  74. 74.

    Magma Chamber Processes over the past 475,000 years at Mount Hood, Oregon: Insights from Crystal Zoning and Crystal Size Distribution Studies MS thesis, Oregon State Univ. (2006)

  75. 75.

    , , , & Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA. J. Petrol. 49, 1755–1780 (2008)

  76. 76.

    Crystallization of silicate magmas deciphered using crystal size distributions. J. Am. Ceram. Soc. 90, 746–757 (2007)

  77. 77.

    & Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma. Earth Planet. Sci. Lett. 300, 246–254 (2010)

  78. 78.

    & Kinetics of cooling- and decompression-induced crystallization in hydrous mafic-intermediate magmas. J. Volcanol. Geotherm. Res. 260, 127–145 (2013)

  79. 79.

    Groundmass crystallization of Mount St. Helens dacite, 1980-1986: a tool for interpreting shallow magmatic processes. Contrib. Mineral. Petrol. 109, 431–449 (1992)

  80. 80.

    et al. Vapor transport prior to the October 2004 eruption of Mount St. Helens, Washington: insight from Li and 210Pb systematics. Geology 35, 231–234 (2007)

  81. 81.

    & Sources of elemental fractionation and uncertainty during the analysis of semi-volatile metals in silicate glasses using LA-ICP-MS. J. Anal. At. Spectrom. 27, 1502–1508 (2012)

  82. 82.

    , & Anorthite-calibrated backscattered electron profiles, trace elements, and growth textures in feldspars from the Teide-Pico Viejo volcanic complex (Tenerife). J. Volcanol. Geotherm. Res. 154, 117–130 (2006)

  83. 83.

    , , & in A Volcano Rekindled: the Renewed Eruption of Mount St. Helens, 2004-2006 (eds , & ) 809–826 (US Geological Survey Prof. Pap. 1750, 2008)

  84. 84.

    & Strontium diffusion kinetics in plagioclase feldspars. Geochim. Cosmochim. Acta 58, 3785–3793 (1994)

Download references

Acknowledgements

Funding for this project was provided by the US NSF (EAR-0838389 to KMC; EAR-0838421 to AJRK). We thank W. Bohrson for assistance with R-MELTS and measurement of CSD. F. Costa also provided assistance with diffusion modelling. We thank T. Plank for comments that improved the clarity and content of the manuscript.

Author information

Affiliations

  1. Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, California 95616, USA

    • Kari M. Cooper
  2. College of Earth, Ocean and Atmospheric Sciences, 104 Ocean Administration, Oregon State University, Corvallis, Oregon 97331, USA

    • Adam J. R. Kent

Authors

  1. Search for Kari M. Cooper in:

  2. Search for Adam J. R. Kent in:

Contributions

The authors jointly conceived the project, obtained funding, and developed the interpretations presented in the manuscript. K.M.C. was primarily responsible for the U-series age compilation and interpretations, and A.J.R.K. was primarily responsible for the CSD and diffusion modelling. K.M.C. took the lead on writing the manuscript, with substantial input by A.J.R.K.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Kari M. Cooper.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature12991

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing