Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial form and function

Abstract

Mitochondria are one of the major ancient endomembrane systems in eukaryotic cells. Owing to their ability to produce ATP through respiration, they became a driving force in evolution. As an essential step in the process of eukaryotic evolution, the size of the mitochondrial chromosome was drastically reduced, and the behaviour of mitochondria within eukaryotic cells radically changed. Recent advances have revealed how the organelle's behaviour has evolved to allow the accurate transmission of its genome and to become responsive to the needs of the cell and its own dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The organization and distribution of mitochondria and mtDNA in higher eukaryotes.
Figure 2: Evolution of mitochondrial division site placement mechanisms.
Figure 3: Integration of mitochondrial stress response pathways and their coordination with mitochondrial shape.

Similar content being viewed by others

References

  1. Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Gabaldón, T. & Huynen, M. A. Shaping the mitochondrial proteome. Biochim. Biophys. Acta 1659, 212–220 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA 100, 13207–13212 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Forner, F., Foster, L. J., Campanaro, S., Valle, G. & Mann, M. Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol. Cell. Proteomics 5, 608–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Lecrenier, N., Van Der Bruggen, P. & Foury, F. Mitochondrial DNA polymerases from yeast to man: a new family of polymerases. Gene 185, 147–152 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Stumpf, J. D. & Copeland, W. C. Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations. Cellular and molecular life sciences. Cell. Mol. Life Sci. 68, 219–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Tiranti, V. et al. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the expressed sequence tags database. Hum. Mol. Genet. 6, 615–625 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Christian, B. E. & Spremulli, L. L. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim. Biophys. Acta 1819, 1035–1054 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Fung, S., Nishimura, T., Sasarman, F. & Shoubridge, E. A. The conserved interaction of C7orf30 with MRPL14 promotes biogenesis of the mitochondrial large ribosomal subunit and mitochondrial translation. Mol. Biol. Cell 24, 184–193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma, M. R. et al. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115, 97–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Neupert, W. & Herrmann, J. M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt, O., Pfanner, N. & Meisinger, C. Mitochondrial protein import: from proteomics to functional mechanisms. Nature Rev. Mol. Cell Biol. 11, 655–667 (2010).

    Article  CAS  Google Scholar 

  16. Jäger, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jeninga, E. H., Schoonjans, K. & Auwerx, J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene 29, 4617–4624 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Scarpulla, R. C., Vega, R. B. & Kelly, D. P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23, 459–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gadir, N., Haim-Vilmovsky, L., Kraut-Cohen, J. & Gerst, J. E. Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae. RNA 17, 1551–1565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia, M. et al. Mitochondria-associated yeast mRNAs and the biogenesis of molecular complexes. Mol. Biol. Cell 18, 362–368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmidt, O. et al. Regulation of mitochondrial protein import by cytosolic kinases. Cell 144, 227–239 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wallace, D. C. et al. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242, 1427–1430 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Morris, A. A. et al. Deficiency of respiratory chain complex I is a common cause of Leigh disease. Ann. Neurol. 40, 25–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Ross, J. M. et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501, 412–415 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahlqvist, K. J. et al. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab. 15, 100–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Ngo, H. B., Kaiser, J. T. & Chan, D. C. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nature Struct. Mol. Biol. 18, 1290–1296 (2011).

    Article  CAS  Google Scholar 

  28. Rubio-Cosials, A. et al. Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nature Struct. Mol. Biol. 18, 1281–1289 (2011).

    Article  CAS  Google Scholar 

  29. Ekstrand, M. I. et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 13, 935–944 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Shi, Y. et al. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc. Natl Acad. Sci. USA 109, 16510–16515 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bogenhagen, D. F. Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta 1819, 914–920 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Copeland, W. C. Defects in mitochondrial DNA replication and human disease. Crit. Rev. Biochem. Mol. Biol. 47, 64–74 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bogenhagen, D. F., Wang, Y., Shen, E. L. & Kobayashi, R. Protein components of mitochondrial DNA nucleoids in higher eukaryotes. Mol. Cell. Proteomics 2, 1205–1216 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kaufman, B. A. et al. In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc. Natl Acad. Sci. USA 97, 7772–7777 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. He, J. et al. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res. 40, 6109–6121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mbantenkhu, M. et al. Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination. J. Biol. Chem. 286, 42360–42370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holt, I. J. & Reyes, A. Human mitochondrial DNA replication. Cold Spring Harb. Perspect. Biol. 4, a012971 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Brown, T. A., Tkachuk, A. N. & Clayton, D. A. Native R-loops persist throughout the mouse mitochondrial DNA genome. J. Biol. Chem. 283, 36743–36751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brown, T. A. et al. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol. Cell. Biol. 31, 4994–5010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kukat, C. et al. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc. Natl Acad. Sci. USA 108, 13534–13539 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Birky, C. W., Jr. The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu. Rev. Genet. 35, 125–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Al Rawi, S. et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–1147 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Pepling, M. E., Wilhelm, J. E., O'Hara, A. L., Gephardt, G. W. & Spradling, A. C. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc. Natl Acad. Sci. USA 104, 187–192 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Hämäläinen, R. H. et al. Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proc. Natl Acad. Sci. USA 110, E3622–E3630 (2013). This paper showed that during reprogramming of heteroplasmic fibroblasts derived from mitochondrial disease patients, mutant and wild-type mitochondrial genomes segregate through a bottleneck towards a homoplasmic state.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meeusen, S. & Nunnari, J. Evidence for a two membrane-spanning autonomous mitochondrial DNA replisome. J. Cell Biol. 163, 503–510 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, H., McCaffery, J. M. & Chan, D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, H. et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280–289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hermann, G. J. et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359–373 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rolland, S. G. et al. Impaired complex IV activity in response to loss of LRPPRC function can be compensated by mitochondrial hyperfusion. Proc. Natl Acad. Sci. USA 110, E2967–E2976 (2013). This paper demonstrates that mitochondria can undergo hyperfusion and temporarily maintain ATP production to compensate for a reduction of complex IV activity due to loss of the RNA-binding protein LRPPRC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, H., Chomyn, A. & Chan, D. C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biol. 11, 958–966 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Parone, P. A. et al. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 3, e3257 (2008).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186, 805–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hanekamp, T. et al. Maintenance of mitochondrial morphology is linked to maintenance of the mitochondrial genome in Saccharomyces cerevisiae. Genetics 162, 1147–1156 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Faelber, K. et al. Oligomerization of dynamin superfamily proteins in health and disease. Prog. Mol. Biol. Transl. Sci. 117, 411–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Labrousse, A. M., Zappaterra, M. D., Rube, D. A. & van der Bliek, A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815–826 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Ford, M. G., Jenni, S. & Nunnari, J. The crystal structure of dynamin. Nature 477, 561–566 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fröhlich, C. et al. Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J. 32, 1280–1292 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Faelber, K. et al. Crystal structure of nucleotide-free dynamin. Nature 477, 556–560 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Meeusen, S., McCaffery, J. M. & Nunnari, J. Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Low, H. H., Sachse, C., Amos, L. A. & Lowe, J. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139, 1342–1352 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Osteryoung, K. W. & Nunnari, J. The division of endosymbiotic organelles. Science 302, 1698–1704 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Nishida, K. et al. Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc. Natl Acad. Sci. USA 100, 2146–2151 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141–1158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Kornmann, B. et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Murley, A. et al. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife 2, e00422 (2013). In yeast, ERMD serves to segregate mitochondrial genomes into tips of newly divided mitochondria, and the conserved Miro GTPase Gem1 may spatially resolve ER–mitochondrial contacts post-division.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hobbs, A. E., Srinivasan, M., McCaffery, J. M. & Jensen, R. E. Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J. Cell Biol. 152, 401–410 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boldogh, I. R. et al. A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glater, E. E., Megeath, L. J., Stowers, R. S. & Schwarz, T. L. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173, 545–557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fransson, S., Ruusala, A. & Aspenstrom, P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem. Biophys. Res. Commun. 344, 500–510 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Iborra, F. J., Kimura, H. & Cook, P. R. The functional organization of mitochondrial genomes in human cells. BMC Biol. 2, 9 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Garrido, N. et al. Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell 14, 1583–1596 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ban-Ishihara, R., Ishihara, T., Sasaki, N., Mihara, K. & Ishihara, N. Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. Proc. Natl Acad. Sci. USA 110, 11863–11868 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Messerschmitt, M. et al. The inner membrane protein Mdm33 controls mitochondrial morphology in yeast. J. Cell Biol. 160, 553–564 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Spelbrink, J. N. et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nature Genet. 28, 223–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Osman, C., Voelker, D. R. & Langer, T. Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 192, 7–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoppins, S. et al. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195, 323–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harner, M. et al. The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J. 30, 4356–4370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. von der Malsburg, K. et al. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 21, 694–707 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Davies, K. M., Anselmi, C., Wittig, I., Faraldo-Gomez, J. D. & Kuhlbrandt, W. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl Acad. Sci. USA 109, 13602–13607 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Itoh, K., Tamura, Y., Iijima, M. & Sesaki, H. Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology. Mol. Biol. Cell 24, 1842–1851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Voss, C., Lahiri, S., Young, B. P., Loewen, C. J. & Prinz, W. A. ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae. J. Cell Sci. 125, 4791–4799 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Montessuit, S. et al. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142, 889–901 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chipuk, J. E. et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148, 988–1000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hoppins, S. et al. The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol. Cell 41, 150–160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Namba, T. et al. CDIP1–BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress. Cell Rep. 5, 331–339 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Schon, E. A. & Przedborski, S. Mitochondria: the next (neurode) generation. Neuron 70, 1033–1053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Area-Gomez, E. et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hedskog, L. et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models. Proc. Natl Acad. Sci. USA 110, 7916–7921 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lackner, L. L., Ping, H., Graef, M., Murley, A. & Nunnari, J. Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl Acad. Sci. USA 110, E458–E467 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Swayne, T. C. et al. Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr. Biol. 21, 1994–1999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  100. Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nature Rev. Mol. Cell Biol. 13, 607–625 (2012).

    Article  CAS  Google Scholar 

  101. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Chen, Y. & Sheng, Z. H. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 202, 351–364 (2013). The authors show that the protein syntaphilin can regulate mitochondrial position in neurons by acting as a molecular brake through its binding to the microtubule motor Kif5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baloh, R. H., Schmidt, R. E., Pestronk, A. & Milbrandt, J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J. Neurosci. 27, 422–430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J. & Baloh, R. H. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30, 4232–4240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Baker, M. J., Tatsuta, T. & Langer, T. Quality control of mitochondrial proteostasis. Cold Spring Harb. Perspect. Biol. 3, a007559 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao, Q. et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21, 4411–4419 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Martinus, R. D. et al. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur. J. Biochem. 240, 98–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Haynes, C. M., Yang, Y., Blais, S. P., Neubert, T. A. & Ron, D. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol. Cell 37, 529–540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M. & Haynes, C. M. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587–590 (2012). This work demonstrated that in C. elegans , the transcription factor ATFS-1 senses and modulates a response to mitochondrial stress through its targeting to either the mitochondrial matrix or the nucleus.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Griparic, L., Kanazawa, T. & van der Bliek, A. M. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol. 178, 757–764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Head, B., Griparic, L., Amiri, M., Gandre-Babbe, S. & van der Bliek, A. M. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol. 187, 959–966 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ehses, S. et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 187, 1023–1036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl Acad. Sci. USA 108, 10190–10195 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gomes, L. C., Di Benedetto, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biol. 13, 589–598 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wang, X. et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chan, N. C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726–1737 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu, S., Peng, G., Wang, Y., Fang, S. & Karbowski, M. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell 22, 291–300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vincow, E. S. et al. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc. Natl Acad. Sci. USA 110, 6400–6405 (2013). The authors utilized proteomics of Drosophila Pink1 and Parkin mutants to show that respiratory complex components are selectively turned over compared with other mitochondrial proteins during mitophagy.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  125. Sterky, F. H., Lee, S., Wibom, R., Olson, L. & Larsson, N. G. Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl Acad. Sci. USA 108, 12937–12942 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Nunnari lab for helpful discussions and comments. We also thank K. Osteryoung and S. Lewis for helpful discussions. J.N. is supported by NIH grants R01GM062942, R01GM097432 and R01GM106019. J.F. is supported by a fellowship from the Jane Coffin Childs Memorial Fund for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jodi Nunnari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, J., Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014). https://doi.org/10.1038/nature12985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12985

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing