Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Circuit dynamics of adaptive and maladaptive behaviour

Abstract

The recent development of technologies for investigating specific components of intact biological systems has allowed elucidation of the neural circuitry underlying adaptive and maladaptive behaviours. Investigators are now able to observe and control, with high spatio-temporal resolution, structurally defined intact pathways along which electrical activity flows during and after the performance of complex behaviours. These investigations have revealed that control of projection-specific dynamics is well suited to modulating behavioural patterns that are relevant to a broad range of psychiatric diseases. Structural dynamics principles have emerged to provide diverse, unexpected and causal insights into the operation of intact and diseased nervous systems, linking form and function in the brain.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Visualizing projections in the intact mammalian brain.
Figure 2: Controlling projections in the intact mammalian brain.

References

  1. Akil, H. et al. The future of psychiatric research: genomes and neural circuits. Science 327, 1580–1581 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. Deisseroth, K. Optogenetics and psychiatry: applications, challenges, and opportunities. Biol. Psychiatry 71, 1030–1032 (2012).

    PubMed  Google Scholar 

  3. Abbott, A. Novartis to shut brain research facility. Nature 480, 161–162 (2011).

    ADS  CAS  PubMed  Google Scholar 

  4. Deisseroth, K. Controlling the brain with light. Sci. Am. 303, 48–55 (2010).

    ADS  PubMed  Google Scholar 

  5. Maks, C. B., Butson, C. R., Walter, B. L., Vitek, J. L. & McIntyre, C. C. Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. J. Neurol. Neurosurg. Psychiatry 80, 659–666 (2009).

    CAS  PubMed  Google Scholar 

  6. Holtzheimer, P. E. & Mayberg, H. S. Deep brain stimulation for psychiatric disorders. Annu. Rev. Neurosci. 34, 289–307 (2011). This is a recent comprehensive review of DBS targets and effects in psychiatry.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Oluigbo, C. O., Salma, A. & Rezai, A. R. Deep brain stimulation for neurological disorders. IEEE Rev. Biomed. Eng. 5, 88–99 (2012).

    PubMed  Google Scholar 

  8. Benabid, A. L. & Torres, N. New targets for DBS. Parkinsonism Relat. Disord. 18 (Suppl 1), 21–23 (2012).

    Google Scholar 

  9. Goodman, W. K. & Alterman, R. L. Deep brain stimulation for intractable psychiatric disorders. Annu. Rev. Med. 63, 511–524 (2012).

    CAS  PubMed  Google Scholar 

  10. Bewernick, B. H., Kayser, S., Sturm, V. & Schlaepfer, T. E. Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology 37, 1975–1985 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan, D. T. et al. Complications of deep brain stimulation: a collective review. Asian J. Surg. 32, 258–263 (2009).

    PubMed  Google Scholar 

  12. Birdno, M. J. & Grill, W. M. Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 5, 14–25 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009). This initial study of optogenetic projection control in modulating behaviour targeted afferents to the subthalamic nucleus that influence parkinsonian symptoms.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andrews-Zwilling, Y. et al. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS ONE 7, e40555 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chao, H. T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Akam, T., Oren, I., Mantoan, L., Ferenczi, E. & Kullmann, D. M. Oscillatory dynamics in the hippocampus support dentate gyrus–CA3 coupling. Nature Neurosci. 15, 763–768 (2012).

    CAS  Google Scholar 

  19. Blumhagen, F. et al. Neuronal filtering of multiplexed odour representations. Nature 479, 493–498 (2011).

    ADS  CAS  PubMed  Google Scholar 

  20. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carlén, M. et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol. Psychiatry 17, 537–548 (2012).

    PubMed  Google Scholar 

  22. Figee, M. et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nature Neurosci. 16, 386–387 (2013).

    CAS  PubMed  Google Scholar 

  23. Rho, Y. A., McIntosh, R. A. & Jirsa, V. K. Synchrony of two brain regions predicts the blood oxygen level dependent activity of a third. Brain Connect. 1, 73–80 (2011).

    PubMed  Google Scholar 

  24. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tiesinga, P. H. & Sejnowski, T. J. Mechanisms for phase shifting in cortical networks and their role in communication through coherence. Front. Hum. Neurosci. 4, 196 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Jirsa, V. K. Connectivity and dynamics of neural information processing. Neuroinformatics 2, 183–204 (2004).

    PubMed  Google Scholar 

  27. Stroh, A. et al. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77, 1136–1150 (2013).

    CAS  PubMed  Google Scholar 

  28. Airan, R. D. et al. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317, 819–823 (2007).

    ADS  CAS  PubMed  Google Scholar 

  29. Gutierrez, G. J., O'Leary, T. & Marder, E. Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77, 845–858 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Deisseroth, K. Optogenetics. Nature Methods 8, 26–29 (2011).

    CAS  PubMed  Google Scholar 

  31. Packer, A. M., Roska, B. & Hausser, M. Targeting neurons and photons for optogenetics. Nature Neurosci. 16, 805–815 (2013).

    CAS  PubMed  Google Scholar 

  32. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    CAS  PubMed  Google Scholar 

  34. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, Q. et al. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76, 1030–1041 (2012).

    CAS  PubMed  Google Scholar 

  36. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011). This was the initial study targeting specific projections in behaviour; gain- or loss-of-function was delivered by optogenetic excitation or inhibition to a specific amygdala projection, with the resulting bidirectional expression of anxiety-related behaviours.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuhn, B., Ozden, I., Lampi, Y., Hasan, M. T. & Wang, S. S. An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex. Front. Neural Circuits 6, 49 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Saunders, A., Johnson, C. A. & Sabatini, B. L. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Front. Neural Circuits 6, 47 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nature Protocols 5, 439–456 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Osakada, F. et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71, 617–631 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Antinone, S. E. & Smith, G. A. Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J. Virol. 84, 1504–1512 (2010).

    CAS  PubMed  Google Scholar 

  44. Miyamichi, K. et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature 472, 191–196 (2011).

    ADS  CAS  PubMed  Google Scholar 

  45. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007). References 44 and 45 describe rabies-based tools used to define and study afferent projections to cell populations in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lima, S. Q., Hromadka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4, e6099 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  47. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Znamenskiy, P. & Zador, A. M. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 497, 482–485 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lichtman, J. W. & Denk, W. The big and the small: challenges of imaging the brain's circuits. Science 334, 618–623 (2011).

    ADS  CAS  PubMed  Google Scholar 

  50. Osten, P. & Margrie, T. W. Mapping brain circuitry with a light microscope. Nature Methods 10, 515–523 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    ADS  CAS  PubMed  Google Scholar 

  53. Micheva, K. D. & Smith, S. J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hama, H. et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neurosci. 14, 1481–1488 (2011).

    CAS  PubMed  Google Scholar 

  55. Dodt, H. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods 4, 331–336 (2007).

    CAS  PubMed  Google Scholar 

  56. Ertürk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nature Protocols 7, 1983–1995 (2012).

    PubMed  Google Scholar 

  57. Ke, M.-T., Fujimoto, S. & Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nature Neurosci. 16, 1154–1161 (2013).

    CAS  PubMed  Google Scholar 

  58. Kuwajima, T. et al. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140, 1364–1368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bohland, J. W. et al. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput. Biol. 5, e1000334 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013). This article reports a chemical engineering method for visualizing and labelling projections in the intact brain.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nature Methods 10, 508–513 (2013).

    CAS  PubMed  Google Scholar 

  62. Regehr, W. G. & Tank, D. W. Selective fura-2 loading of presynaptic terminals and nerve cell processes by local perfusion in mammalian brain slice. J. Neurosci. Methods 37, 111–119 (1991).

    CAS  PubMed  Google Scholar 

  63. Tye, K. M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Rev. Neurosci. 13, 251–266 (2012).

    CAS  Google Scholar 

  64. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

    ADS  CAS  PubMed  Google Scholar 

  65. Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Iwata, J. & LeDoux, J. E. Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat. Behav. Neurosci. 102, 66–76 (1988).

    CAS  PubMed  Google Scholar 

  67. Johansen, J. P. et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc. Natl Acad. Sci. USA 107, 12692–12697 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, S. Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219–223 (2013). This study reports the optogenetic decomposition of a behavioural state into component features by projection-targeting-based recruitment of separable anxiety-related features.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fineberg, N. A. et al. Probing compulsive and impulsive behaviours, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35, 591–604 (2010).

    PubMed  Google Scholar 

  70. Ahmari, S. E. et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340, 1234–1239 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Burguière, E., Monteiro, P., Feng, G. & Graybiel, A. M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340, 1243–1246 (2013).

    ADS  PubMed  Google Scholar 

  72. Stopper, C. M., Green, E. B. & Floresco, S. B. Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice. Cereb. Cortex 24, 154–162 (2014).

    PubMed  Google Scholar 

  73. Krishnan, V. & Nestler, E. J. Animal models of depression: molecular perspectives. Curr. Topics Behav. Neurosci. 7, 121–147 (2011).

    Google Scholar 

  74. Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nature Neurosci. 13, 1161–1169 (2010).

    CAS  PubMed  Google Scholar 

  75. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    ADS  CAS  PubMed  Google Scholar 

  76. Warden, M. R. et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature 492, 428–432 (2012). This article describes optogenetic projection-targeting-based recruitment of prefrontal pathways favouring active-coping or passive-coping behavioural patterns relevant to depression.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Voon, V. et al. Dopamine agonists and risk: impulse control disorders in Parkinson's disease. Brain 134, 1438–1446 (2011).

    PubMed  PubMed Central  Google Scholar 

  78. Young, J. W., van Enkhuizen, J., Winstanley, C. A. & Geyer, M. A. Increased risk-taking behavior in dopamine transporter knockdown mice: further support for a mouse model of mania. J. Psychopharmacol. 25, 934–943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Farrell, S. M., Tunbridge, E. M., Braeutigam, S. & Harrison, P. J. COMT Val158 Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol. Psychiatry 71, 538–544 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Foti, D. & Hajcak, G. Genetic variation in dopamine moderates neural response during reward anticipation and delivery: evidence from event-related potentials. Psychophysiology 49, 617–626 (2012).

    PubMed  Google Scholar 

  81. Witten, I. B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bewernick, B. H. et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol. Psychiatry 67, 110–116 (2010).

    PubMed  Google Scholar 

  83. Carter, M. E. & de Lecea, L. Optogenetic investigation of neural circuits in vivo. Trends Mol. Med. 17, 197–206 (2011).

    PubMed  PubMed Central  Google Scholar 

  84. Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature Neurosci. 13, 1526–1533 (2010).

    CAS  PubMed  Google Scholar 

  85. Carter, M. E. et al. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc. Natl Acad. Sci. USA 109, E2635–E2644 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Domingos, A. I. et al. Leptin regulates the reward value of nutrient. Nature Neurosci. 14, 1562–1568 (2011).

    CAS  PubMed  Google Scholar 

  87. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jennings, J. H., Rizzi, G., Stamatakis, A. M., Ung, R. L. & Stuber, G. D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517–1521 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33, 368–377 (2008).

    PubMed  Google Scholar 

  91. Grubert, C. et al. Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: effects of 12-month stimulation. World J. Biol. Psychiatry 12, 516–527 (2011).

    PubMed  Google Scholar 

  92. Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011). Early projection-targeting study in mammalian appetitive and aversive conditioning, demonstrating bidirectional control of the BLA to nucleus accumbens projection using ChR2 and eNpHR3.0.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Britt, J. P. et al. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76, 790–803 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lobo, M. K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stefanik, M. T. et al. Optogenetic inhibition of cocaine seeking in rats. Addict. Biol. 18, 50–53 (2013).

    CAS  PubMed  Google Scholar 

  96. Pascoli, V., Turiault, M. & Luscher, C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481, 71–75 (2012).

    ADS  CAS  Google Scholar 

  97. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012). This paper describes the behavioural control of appetitive and aversive conditioning by targeting distinct incoming projections (from LDT or LHb) into the VTA.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stamatakis, A. M. & Stuber, G. D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nature Neurosci. 15, 1105–1107 (2012).

    CAS  PubMed  Google Scholar 

  99. Shabel, S. J., Proulx, C. D., Trias, A., Murphy, R. T. & Malinow, R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron 74, 475–481 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Jennings, J. H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    ADS  CAS  PubMed  Google Scholar 

  102. Lozano, A. M. & Lipsman, N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77, 406–424 (2013).

    CAS  PubMed  Google Scholar 

  103. Deco, G., Senden, M. & Jirsa, V. How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Front. Comput. Neurosci. 6, 68 (2012).

    PubMed  PubMed Central  Google Scholar 

  104. Li, X. et al. Using interleaved transcranial magnetic stimulation/functional magnetic resonance imaging (fMRI) and dynamic causal modeling to understand the discrete circuit specific changes of medications: lamotrigine and valproic acid changes in motor or prefrontal effective connectivity. Psychiatry Res. 194, 141–148 (2011).

    ADS  PubMed  Google Scholar 

  105. Chen, A. C. Causal interactions between front-parietal central executive and default-mode networks in humans. Proc. Natl Acad. Sci. USA 110, 19944–19949 (2013).

    ADS  CAS  Google Scholar 

  106. Gutman, D. A., Holtzheimer, P. E., Behrens, T. E., Johansen-Berg, H. & Mayberg, H. S. A tractography analysis of two deep brain stimulation white matter targets for depression. Biol. Psychiatry 65, 276–282 (2009).

    PubMed  Google Scholar 

  107. Toga, A. W., Ambach, K., Quinn, B., Hutchin, M. & Burton, J. S. Postmortem anatomy from cryosectioned whole human brain. J. Neurosci. Methods 54, 239–252 (1994).

    CAS  PubMed  Google Scholar 

  108. Rauschning, W. Surface cryoplaning. A technique for clinical anatomical correlations. Ups. J. Med. Sci. 91, 251–255 (1986).

    CAS  PubMed  Google Scholar 

  109. Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013).

    ADS  CAS  PubMed  Google Scholar 

  110. Cabral, J., Kringelbach, M. L. & Deco, G. Functional graph alterations in schizophrenia: a result from a global anatomic decoupling? Pharmacopsychiatry 45 (Suppl 1), 57–64 (2012).

    Google Scholar 

  111. Pinotsis, D. A., Hansen, E., Friston, K. J. & Jirsa, V. K. Anatomical connectivity and the resting state activity of large cortical networks. Neuroimage 65, 127–138 (2013).

    CAS  PubMed  Google Scholar 

  112. Sporns, O. The non-random brain: efficiency, economy, and complex dynamics. Front. Comput. Neurosci. 5, 5 (2011).

    PubMed  PubMed Central  Google Scholar 

  113. Jirsa, V. K., Sporns, O., Breakspear, M., Deco, G. & McIntosh, A. R. Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol. 148, 189–205 (2010).

    CAS  PubMed  Google Scholar 

  114. Sporns, O. The human connectome: a complex network. Ann. NY Acad. Sci. 1224, 109–125 (2011).

    ADS  PubMed  Google Scholar 

  115. Bullmore, E. T. & Bassett, D. S. Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113–140 (2011).

    PubMed  Google Scholar 

  116. Fornito, A. & Bullmore, E. T. Connectomic intermediate phenotypes for psychiatric disorders. Front. Psychiatry 3, 32 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. Tritsch, N. X., Ding, J. B. & Sabatini, B. L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490, 262–266 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fitzsimmons, J., Kubicki, M. & Shenton, M. E. Review of functional and anatomical brain connectivity findings in schizophrenia. Curr. Opin. Psychiatry 26, 172–187 (2013).

    PubMed  Google Scholar 

  119. Lynall, M. E. et al. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30, 9477–9487 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Maher, B. J. & LoTurco, J. J. Disrupted-in-schizophrenia (DISC1) functions presynaptically at glutamatergic synapses. PLoS ONE 7, e34053 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Felix-Ortiz, A. C. et al. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79, 658–664 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gunaydin, L. et al. Real-time optical measurement of projection activity: dynamics of genetically- and anatomically-defined neuronal afferents predict social behavior in freely moving mice. Program No. 872.04. 2013 Neuroscience Meeting Planner. (Society for Neuroscience, 2013).

    Google Scholar 

  123. Stamatakis, A. M. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 20, 1039–1053 (2013).

    Google Scholar 

  124. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007).

    CAS  PubMed  Google Scholar 

  126. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods 9, 159–172 (2012).

    CAS  Google Scholar 

  127. Zalocusky, K. & Deisseroth, K. Optogenetics in the behaving rat: integration of diverse new technologies in a vital animal model. Optogenetics 2013, 1–17 (2013).

    Google Scholar 

Download references

Acknowledgements

I am deeply indebted to my patients over the years for their insight, perseverance and strength in working to convey the most complex and nearly inarticulatable inner thought processes and feelings associated with severe psychiatric disease. I am also grateful to my entire laboratory for support, as well as to V. Sohal, A. Schatzberg, H. Mayberg, R. Malenka, A. Etkin, L. Grosenick, A. Kreitzer, T. Insel, M. Warden, M. Zelikowsky and E. Ferenczi for comments and discussions over the years. K.D. has been supported by the Wiegers Family Fund, NARSAD, NIMH, NIDA, DARPA, the Keck Foundation, the McKnight Foundation, the Yu, Snyder and Woo Foundations, and the Gatsby Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Deisseroth.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deisseroth, K. Circuit dynamics of adaptive and maladaptive behaviour. Nature 505, 309–317 (2014). https://doi.org/10.1038/nature12982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12982

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing