Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Disease associations between honeybees and bumblebees as a threat to wild pollinators


Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly1 and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops2. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens3,4, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline5,6, one cause of which may be pathogen spillover from managed pollinators like honeybees7,8 or commercial colonies of bumblebees9. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates10,11 highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: DWV and N. ceranae infectivity in bumblebees.
Figure 2: Geographical distribution of DWV and N. ceranae across their pollinator hosts.
Figure 3: Sympatric Apis and Bombus share viral strains.

Similar content being viewed by others

Accession codes



Data deposits

Viral RNA sequences have been deposited in GenBank under accession numbers KF929216KF929290.


  1. Binder, S., Levitt, A. M., Sacks, J. J. & Hughes, J. M. Emerging infectious diseases: public health issues for the 21st century. Science 284, 1311–1313 (1999)

    ADS  CAS  PubMed  Google Scholar 

  2. Oldroyd, B. P. Coevolution while you wait: Varroa jacobsoni, a new parasite of western honeybees. Trends Ecol. Evol. 14, 312–315 (1999)

    CAS  Google Scholar 

  3. Ratnieks, F. L. W. & Carreck, N. L. Clarity on honey bee collapse? Science 327, 152–153 (2010)

    ADS  CAS  PubMed  Google Scholar 

  4. Vanbergen, A. J. The Insect Pollinator Initiative. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ 11, 251–259 (2013)

    Google Scholar 

  5. Williams, P. H. & Osborne, J. L. Bumblebee vulnerability and conservation world-wide. Apidologie 40, 367–387 (2009)

    Google Scholar 

  6. Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011)

    ADS  CAS  PubMed  Google Scholar 

  7. Evison, S. E. F. et al. Pervasiveness of parasites in pollinators. PLoS ONE 7, e30641 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Genersch, E., Yue, C., Fries, I. & de Miranda, J. R. Detection of deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. J. Invertebr. Pathol. 91, 61–63 (2006)

    PubMed  Google Scholar 

  9. Meeus, I., Brown, M. J. F., De Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–671 (2011)

    PubMed  Google Scholar 

  10. Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012)

    ADS  CAS  PubMed  Google Scholar 

  11. Krebs, J. et al. Bovine Tuberculosis in Cattle and Badgers (MAFF Publications, 1997)

  12. Vitousek, P. M., Dantonio, C. M., Loope, L. L. & Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996)

    ADS  Google Scholar 

  13. Daszak, P. Emerging infectious diseases of wildlife — threats to biodiversity and human health. Science 287, 443–449 (2000)

    ADS  CAS  PubMed  Google Scholar 

  14. Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 164, S64–S78 (2004)

    PubMed  Google Scholar 

  15. Alderman, D. J. Geographical spread of bacterial and fungal diseases of crustaceans. Rev. Sci. Tech. 15, 603–632 (1996)

    CAS  PubMed  Google Scholar 

  16. Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010)

    Google Scholar 

  17. Paxton, R. J. Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? J. Apic. Res. 49, 80–84 (2010)

    Google Scholar 

  18. Murray, T. E., Coffey, M. F., Kehoe, E. & Horgan, F. G. Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. Biol. Conserv. 159, 269–276 (2013)

    Google Scholar 

  19. Singh, R. et al. RNA viruses in Hymenopteran pollinators: evidence of inter-taxa virus tansmission via pollen and potential impact on non-Apis Hymenopteran species. PLoS ONE 5, e14357 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Graystock, P. et al. The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 50, 1207–1215 (2013)

    Google Scholar 

  21. Ongus, J. R. et al. Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J. Gen. Virol. 85, 3747–3755 (2004)

    CAS  Google Scholar 

  22. Moore, J. et al. Recombinants between deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J. Gen. Virol. 92, 156–161 (2011)

    CAS  Google Scholar 

  23. Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M.-H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011)

    PubMed  Google Scholar 

  24. Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306 (2012)

    ADS  CAS  Google Scholar 

  25. Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013)

    PubMed  Google Scholar 

  26. Smart, M. D. & Sheppard, W. S. Nosema ceranae in age cohorts of the western honey bee (Apis mellifera). J. Invertebr. Pathol. 109, 148–151 (2012)

    PubMed  Google Scholar 

  27. Otterstatter, M. C. & Thomson, J. D. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators? PLoS ONE 3, (2008)

  28. Donnelly, C. A. & Woodroffe, R. Reduce uncertainty in UK badger culling. Nature 485, 582 (2012)

    ADS  CAS  PubMed  Google Scholar 

  29. Higes, M., Martin-Hernandez, R., Garrido-Bailon, E., Garcia-Palencia, P. & Meana, A. Detection of infective Nosema ceranae (Microsporidia) spores in corbicular pollen of forager honeybees. J. Invertebr. Pathol. 97, 76–78 (2008)

    PubMed  Google Scholar 

  30. Cole, R. J. Application of the “triangulation” method to the purification of Nosema spores from insect tissues. J. Invertebr. Pathol. 15, 193–195 (1970)

    Google Scholar 

  31. Bailey, L. L. & Ball, B. V. Honey bee pathology 2nd edn, (Academic Press, 1991)

    Google Scholar 

  32. Yañez, O. et al. Deformed wing virus and drone mating flights in the honey bee (Apis mellifera): implications for sexual transmission of a major honey bee virus. Apidologie 43, 17–30 (2012)

    Google Scholar 

  33. Murray, T. E., Fitzpatrick, U., Brown, M. J. F. & Paxton, R. J. Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conserv. Genet. 9, 653–666 (2008)

    CAS  Google Scholar 

  34. Chen, Y., Evans, J. D., Smith, I. B. & Pettis, J. S. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J. Invertebr. Pathol. 97, 186–188 (2008)

    PubMed  Google Scholar 

  35. Genersch, E. Development of a rapid and sensitive RT-PCR method for the detection of deformed wing virus, a pathogen of the honeybee (Apis mellifera). Vet. J. 169, 121–123 (2005)

    CAS  PubMed  Google Scholar 

  36. Hornáková, D., Matouskova, P., Kindl, J., Valterova, I. & Pichova, I. Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Anal. Biochem. 397, 118–120 (2010)

    PubMed  Google Scholar 

  37. de Miranda, J. R. & Genersch, E. Deformed wing virus. J. Invertebr. Pathol. 103, S48–S61 (2010)

    CAS  Google Scholar 

  38. Yue, C. & Genersch, E. RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol. 86, 3419–3424 (2005)

    CAS  Google Scholar 

  39. Craggs, J. K., Ball, J. K., Thomson, B. J., Irving, W. L. & Grabowska, A. M. Development of a strand-specific RT-PCR based assay to detect the replicative form of hepatitis C virus RNA. J. Virol. Methods 94, 111–120 (2001)

    CAS  PubMed  Google Scholar 

  40. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010)

    CAS  Google Scholar 

  41. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001)

    CAS  Google Scholar 

  42. Rambaut, A. & Drummond, A. J. Tracer v1.5. (30 November 2009)

  43. de Bruyn, M. et al. Paleo-drainage basin connectivity predicts evolutionary relationships across three southeast Asian biodiversity hotspots. Syst. Biol. 62, 398–410 (2013)

    PubMed  Google Scholar 

  44. Therneau, T. Coxme: Mixed Effects Cox Models. (15 May 2012)

  45. Reiczigel, J., Foldi, J. & Ozsvari, L. Exact confidence limits for prevalence of a disease with an imperfect diagnostic test. Epidemiol. Infect. 138, 1674–1678 (2010)

    CAS  PubMed  Google Scholar 

  46. Blaker, H. Confidence curves and improved exact confidence intervals for discrete distributions. Can. J. Statist. 28, 783–798 (2000)

    MathSciNet  MATH  Google Scholar 

  47. epiR:. an R package for the analysis of epidemiological data v. R package version 0.9-45. (30 November 2012)

  48. Rossi, R. E., Mulla, D. J., Journel, A. G. & Franz, E. H. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 62, 277–314 (1992)

    Google Scholar 

  49. Larmarange, J., Vallo, R., Yaro, S., Msellati, P. & Meda, N. Methods for mapping regional trends of HIV prevalence from demographic and health surveys (DHS). Cybergeo. (2011)

  50. Moran, P. A. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950)

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  51. Gittleman, J. L. & Kot, M. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Biol. 39, 227–241 (1990)

    Google Scholar 

  52. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004)

    CAS  PubMed  Google Scholar 

  53. Baayen, R. H., Davidson, D. J. & Bates, D. M. Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 59, 390–412 (2008)

    Google Scholar 

  54. Bates, D., Maechler, M. & Bolker, B. lme4: Linear mixed-effects models using S4 classes (22 June 2012)

  55. Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Meth. Ecol. Evol. 1, 103–113 (2010)

    Google Scholar 

  56. R Foundation for Statistical Computing R: a language and environment for statistical computing (26 October 2012)

Download references


The authors are grateful to E. Fürst for technical support and R. J. Gill for discussions. We thank C. Jones, G. Baron and O. Ramos-Rodriguez for comments on previous versions of the manuscript. They also thank Hymettus Ltd for help with the field collections, K. Liu for help in the laboratory and B. McCrea and S. Baldwin for technical help in the bee laboratory. The study was supported by the Insect Pollinators Initiative (funded jointly by the Biotechnology and Biological Sciences Research Council, the Department for Environment, Food and Rural Affairs, the Natural Environment Research Council, The Scottish Government and The Wellcome Trust, under the Living with Environmental Change Partnership: grants BB/I000151/1 (M.J.F.B.), BB/I000100/1 (R.J.P.) and BB/I000097/1 (J.L.O.).

Author information

Authors and Affiliations



The study was jointly conceived by R.J.P., J.L.O. and M.J.F.B. Experiments were designed by M.A.F. and M.J.F.B.; M.A.F prepared the manuscript; M.J.F.B., D.P.M., R.J.P. and J.L.O. edited the manuscript. M.A.F. carried out the experimental, molecular work and analyses, and D.P.M. undertook the phylogenetic analyses.

Corresponding author

Correspondence to M. A. Fürst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Host bee species and sampling-site distributions.

Distribution of sampling sites across Great Britain and the Isle of Man. The most common Bombus species on a given site is represented by coloured letters and the second most common Bombus species is represented by the colours of the dots. Total sample sizes for each site are given in the table.

Extended Data Figure 2 Prevalence of DWV and N. ceranae per site and host bee species.

ad, Pathogen prevalence in Bombus spp. in per cent per site for DWV (a) and for N. ceranae (b), and per species for DWV (c) and for N. ceranae (d). Bars indicate 95% confidence intervals. Note different scales.

Extended Data Figure 3 Raw data for prevalence of DVW and N. ceranae.

The linear models shown only illustrate the relationships but do not drive the conclusions in the main text. a, DWV presence in Apis and Bombus (adjusted R2 = 0.34, P < 0.001). b, DWV replicating in Bombus and DWV presence in Bombus (adjusted R2 = 0.46, P < 0.001). c, N. ceranae presence in Apis and Bombus (adjusted R2 = −0.04, P > 0.728). The line shows the best fit and the dark grey region shows 95% confidence interval of fit.

Extended Data Table 1 Pathogen prevalence per species
Extended Data Table 2 Alternative models for the diversification of DWV and VDV viruses in UK pollinators

Related audio

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fürst, M., McMahon, D., Osborne, J. et al. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing