Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger



Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake1,2,3,4,5. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding3,6,7. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity8,9,10. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping and evaluating connectivity of inputs to AgRPARC neurons.
Figure 2: TRHPVH and PACAPPVH neurons provide excitatory input to AgRP neurons.
Figure 3: Fidelity of TRHPVH/PACAPPVH→ARC and AgRPARC→PVH circuitry.
Figure 4: DREADD-mediated manipulation of TRHPVH or PACAPPVH neurons mediates feeding through AgRP neurons.


  1. Takahashi, K. A. & Cone, R. D. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons. Endocrinology 146, 1043–1047 (2005)

    Article  CAS  Google Scholar 

  2. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neurosci. 14, 351–355 (2011)

    Article  CAS  Google Scholar 

  3. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011)

    Article  CAS  Google Scholar 

  4. Krashes, M. J., Shah, B. P., Koda, S. & Lowell, B. B. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab. 18, 588–595 (2013)

    Article  CAS  Google Scholar 

  5. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012)

    Article  ADS  CAS  Google Scholar 

  6. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nature Neurosci. 8, 1289–1291 (2005)

    Article  CAS  Google Scholar 

  8. Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73, 511–522 (2012)

    Article  Google Scholar 

  9. Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011)

    Article  CAS  Google Scholar 

  10. Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007)

    Article  CAS  Google Scholar 

  12. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012)

    Article  CAS  Google Scholar 

  13. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011)

    Article  CAS  Google Scholar 

  14. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007)

    Article  CAS  Google Scholar 

  15. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008)

    Article  CAS  Google Scholar 

  16. Hahn, T. M., Breininger, J. F., Baskin, D. G. & Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neurosci. 1, 271–272 (1998)

    Article  CAS  Google Scholar 

  17. van den Pol, A. N. et al. Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong Renilla green fluorescent protein in NPY neurons. J. Neurosci. 29, 4622–4639 (2009)

    Article  CAS  Google Scholar 

  18. Sternson, S. M., Shepherd, G. M. & Friedman, J. M. Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nature Neurosci. 8, 1356–1363 (2005)

    Article  CAS  Google Scholar 

  19. Michaud, J. L., Rosenquist, T., May, N. R. & Fan, C. M. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev. 12, 3264–3275 (1998)

    Article  CAS  Google Scholar 

  20. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005)

    Article  CAS  Google Scholar 

  21. Wu, Z. et al. An obligate role of oxytocin neurons in diet induced energy expenditure. PLoS ONE 7, e45167 (2012)

    Article  ADS  CAS  Google Scholar 

  22. Fukushima, Y. et al. Role of endogenous PACAP in catecholamine secretion from the rat adrenal gland. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1562–R1567 (2001)

    Article  CAS  Google Scholar 

  23. Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33, 3624–3632 (2013)

    Article  CAS  Google Scholar 

  24. Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009)

    Article  CAS  Google Scholar 

  25. Leibowitz, S. F., Hammer, N. J. & Chang, K. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol. Behav. 27, 1031–1040 (1981)

    Article  CAS  Google Scholar 

  26. Gold, R. M., Jones, A. P. & Sawchenko, P. E. Paraventricular area: critical focus of a longitudinal neurocircuitry mediating food intake. Physiol. Behav. 18, 1111–1119 (1977)

    Article  CAS  Google Scholar 

  27. Stanley, B. G. & Leibowitz, S. F. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc. Natl Acad. Sci. USA 82, 3940–3943 (1985)

    Article  ADS  CAS  Google Scholar 

  28. Cowley, M. A. et al. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24, 155–163 (1999)

    Article  CAS  Google Scholar 

  29. Kong, D. et al. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151, 645–657 (2012)

    Article  CAS  Google Scholar 

  30. Montmayeur, J. P., Liberles, S. D., Matsunami, H. & Buck, L. B. A candidate taste receptor gene near a sweet taste locus. Nature Neurosci. 4, 492–498 (2001)

    Article  CAS  Google Scholar 

  31. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008)

    Article  CAS  Google Scholar 

  32. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001)

    Article  CAS  Google Scholar 

  33. Satoh, T., Yamada, M., Monden, T., Iizuka, M. & Mori, M. Cloning of the mouse hypothalamic preprothyrotropin-releasing hormone (TRH) cDNA and tissue distribution of its mRNA. Brain Res. Mol. Brain Res. 14, 131–135 (1992)

    Article  CAS  Google Scholar 

Download references


This research was funded by the following NIH grants to B.B.L.: R01 DK096010, R01 DK089044, R01 DK071051, R01 DK075632, R37 DK053477, BNORC Transgenic Core P30 DK046200 and BADERC Transgenic Core P30 DK57521; to M.J.K.: F32 DK089710; to D.P.O.: K08 DK071561; to L.V.: F32 DK078478; to N.U.: R01 MH095953; and an ADA Mentor-Based Fellowship to B.P.S. and B.B.L. We thank D. Cusher and Y. Li for mouse genotyping, J. Carroll and Y. Guo for perfusions and tissue removal, B. L. Roth and S. C. Rogan for generating the AAV-DIO-hM3Dq-mCherry plasmid, K. Deisseroth for generating the AAV-DIO-ChR2-mCherry plasmid and A. N. Hollenberg for the TRH riboprobe.

Author information

Authors and Affiliations



M.J.K., B.P.S. and B.B.L. designed the experiments and analysed data. M.J.K., B.P.S., J.C.M., D.E.S., A.S.G., L.V. and H.P. performed experiments. M.J.K. generated Pdyn-IRES-Cre, Trh-IRES-Cre and Pacap-IRES-Cre mice, D.P.O. generated Oxt-IRES-Cre, Avp-IRES-Cre, Crh-IRES-Cre and R26-loxSTOPlox-L10-GFP mice and L.V. generated Vglut2-IRES-Cre mice. M.W.-U. and N.U. generated, provided and advised on use of AAV-FLEX-TVA-mCherry, AAV-FLEX-RG and SADΔG–EGFP (EnvA) viruses. S.D.L. advised on in situ hybridization experiments. M.J.K and B.B.L. wrote the manuscript with comments from all of the authors.

Corresponding author

Correspondence to Bradford B. Lowell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-12. (PDF 28905 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krashes, M., Shah, B., Madara, J. et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507, 238–242 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing