Abstract
A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density ‘cores’ of dark matter measured at the centre of galaxies, where centrally concentrated high-density ‘cusps’ were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A universal constant for dark matter-baryon interplay
Scientific Reports Open Access 05 March 2019
-
Production of dark-matter bound states in the early universe by three-body recombination
Journal of High Energy Physics Open Access 13 November 2018
-
Constraints on anharmonic corrections of fuzzy dark matter
Journal of High Energy Physics Open Access 14 August 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
The Planck Collaboration et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. (in the press); preprint at http://arxiv.org/abs/1303.5076
Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)
Percival, W. J. et al. The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe. Mon. Not. R. Astron. Soc. 327, 1297–1306 (2001)
White, S. D. M. & Rees, M. J. Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)This paper established the paradigm in which visible galaxies form in the gravitational potential carved out by dark matter halos.
White, S. D. M., Frenk, C. S. & Davis, M. Clustering in a neutrino-dominated universe. Astrophys. J. 274, L1–L5 (1983)
Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996)This work emphasized the universality of the behaviour of simulated dark matter structures, including a central ‘cusp’, irrespective of scale.
Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, L19–L22 (1999)
Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999)
Mateo, M. L. Dwarf galaxies of the Local Group. Annu. Rev. Astron. Astrophys. 36, 435–506 (1998)
Dubinski, J. & Carlberg, R. G. The structure of cold dark matter halos. Astrophys. J. 378, 496–503 (1991)This early paper clearly identified the ‘cusp’ in simulations of the behaviour of cold dark matter.
Moore, B., Governato, F., Quinn, T., Stadel, J. & Lake, G. Resolving the structure of cold dark matter halos. Astrophys. J. 499, L5–L8 (1998)
de Blok, W. J. G. et al. High-resolution rotation curves and galaxy mass models from THINGS. Astron. J. 136, 2648–2719 (2008)
Springel, V. et al. The Aquarius Project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008)
Stadel, J. et al. Quantifying the heart of darkness with GHALO—a multibillion particle simulation of a galactic halo. Mon. Not. R. Astron. Soc. 398, L21–L25 (2009)
Bell, E. F. & de Jong, R. S. Stellar mass-to-light ratios and the Tully-Fisher relation. Astrophys. J. 550, 212–229 (2001)
Gnedin, N. Y., Tassis, K. & Kravtsov, A. V. Modeling molecular hydrogen and star formation in cosmological simulations. Astrophys. J. 697, 55–67 (2009)
Wise, J. H. & Abel, T. ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing. Mon. Not. R. Astron. Soc. 414, 3458–3491 (2011)
Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002)
Kereš, D., Vogelsberger, M., Sijacki, D., Springel, V. & Hernquist, L. Moving-mesh cosmology: characteristics of galaxies and haloes. Mon. Not. R. Astron. Soc. 425, 2027–2048 (2012)
Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006)
Bower, R. G. et al. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 370, 645–655 (2006)
Stinson, G. et al. Star formation and feedback in smoothed particle hydrodynamic simulations—I. Isolated galaxies. Mon. Not. R. Astron. Soc. 373, 1074–1090 (2006)
Hopkins, P. F., Quataert, E. & Murray, N. Stellar feedback in galaxies and the origin of galaxy-scale winds. Mon. Not. R. Astron. Soc. 421, 3522–3537 (2012)
Robertson, B. et al. A merger-driven scenario for cosmological disk galaxy formation. Astrophys. J. 645, 986–1000 (2006)
Kereš, D., Katz, N., Weinberg, D. H. & Davé, R. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005)
Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009)
Blumenthal, G. R., Faber, S. M., Flores, R. & Primack, J. R. Contraction of dark matter galactic halos due to baryonic infall. Astrophys. J. 301, 27–34 (1986)
Shapley, A. E., Steidel, C. C., Pettini, M. & Adelberger, K. L. Rest-frame ultraviolet spectra of z∼3 Lyman break galaxies. Astrophys. J. 588, 65–89 (2003)
Weiner, B. J. et al. Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z = 1.4. Astrophys. J. 692, 187–211 (2009)
Martin, C. L. et al. Demographics and physical properties of gas out/inflows at 0.4. Astrophys. J. 760, 127 (2012)
Steidel, C. C. et al. The structure and kinematics of the circumgalactic medium from far-ultraviolet spectra of z ∼ = 2–3 galaxies. Astrophys. J. 717, 289–322 (2010)
Heckman, T. M., Lehnert, M. D., Strickland, D. K. & Armus, L. Absorption-line probes of gas and dust in galactic superwinds. Astrophys. J. (Suppl.). 129, 493–516 (2000)
Mac Low, M. & Ferrara, A. Starburst-driven mass loss from dwarf galaxies: efficiency and metal ejection. Astrophys. J. 513, 142–155 (1999)
Murray, N., Quataert, E. & Thompson, T. A. The disruption of giant molecular clouds by radiation pressure and the efficiency of star formation in galaxies. Astrophys. J. 709, 191–209 (2010)
van der Wel, A. et al. Extreme emission-line galaxies in CANDELS: broadband-selected, starbursting dwarf galaxies at z > 1. Astrophys. J. 742, 111 (2011)
Rubin, K. H. R. et al. The persistence of cool galactic winds in high stellar mass galaxies between z ∼ 1.4 and ∼1. Astrophys. J. 719, 1503–1525 (2010)
Rubin, K. H. R., Prochaska, J. X., Koo, D. C. & Phillips, A. C. The direct detection of cool, metal-enriched gas accretion onto galaxies at z ∼ 0.5. Astrophys. J. 747, L26 (2012)
Shen, S., Wadsley, J. & Stinson, G. The enrichment of the intergalactic medium with adiabatic feedback—I. Metal cooling and metal diffusion. Mon. Not. R. Astron. Soc. 407, 1581–1596 (2010)
Dutton, A. A. On the origin of exponential galaxy discs. Mon. Not. R. Astron. Soc. 396, 121–140 (2009)
Kormendy, J., Drory, N., Bender, R. & Cornell, M. E. Bulgeless giant galaxies challenge our picture of galaxy formation by hierarchical clustering. Astrophys. J. 723, 54–80 (2010)
Barnes, J. & Efstathiou, G. Angular momentum from tidal torques. Astrophys. J. 319, 575–600 (1987)
van den Bosch, F. C., Burkert, A. & Swaters, R. A. The angular momentum content of dwarf galaxies: new challenges for the theory of galaxy formation. Mon. Not. R. Astron. Soc. 326, 1205–1215 (2001)
Binney, J., Gerhard, O. & Silk, J. The dark matter problem in disc galaxies. Mon. Not. R. Astron. Soc. 321, 471–474 (2001)
Governato, F. et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 463, 203–206 (2010)This work produced, for the first time, a simulated dwarf galaxy with stellar and dark matter distribution consistent with modern day observations.
Brook, C. B. et al. Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum. Mon. Not. R. Astron. Soc. 415, 1051–1060 (2011)
Flores, R. A. & Primack, J. R. Observational and theoretical constraints on singular dark matter halos. Astrophys. J. 427, L1–L4 (1994)
Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629–631 (1994)These two papers (refs 46 and 47) pointed out the great difficulty in reconciling theoretical predictions of dark matter in dwarf galaxies with observations.
Simon, J. D., Bolatto, A. D., Leroy, A., Blitz, L. & Gates, E. L. High-resolution measurements of the halos of four dark matter-dominated galaxies: deviations from a universal density profile. Astrophys. J. 621, 757–776 (2005)
Swaters, R. A., Madore, B. F., van den Bosch, F. C. & Balcells, M. The central mass distribution in dwarf and low surface brightness galaxies. Astrophys. J. 583, 732–751 (2003)
Oh, S.-H., de Blok, W. J. G., Brinks, E., Walter, F. & Kennicutt, R. C., Jr Dark and luminous matter in THINGS dwarf galaxies. Astron. J. 141, 193 (2011)
Oh, S.-H. et al. The central slope of dark matter cores in dwarf galaxies: simulations versus THINGS. Astron. J. 142, 24 (2011)
Walter, F. et al. THINGS: The H I nearby galaxy survey. Astron. J. 136, 2563–2647 (2008)
Hunter, D. A. et al. LITTLE THINGS. Astron. J. 144, 134 (2012)
Mayer, L. et al. The metamorphosis of tidally stirred dwarf galaxies. Astrophys. J. 559, 754–784 (2001)
Nierenberg, A. M. et al. Luminous satellites. II. Spatial distribution, luminosity function, and cosmic evolution. Astrophys. J. 752, 99 (2012)
Strigari, L. E. et al. A common mass scale for satellite galaxies of the Milky Way. Nature 454, 1096–1097 (2008)
Goerdt, T., Moore, B., Read, J. I., Stadel, J. & Zemp, M. Does the Fornax dwarf spheroidal have a central cusp or core? Mon. Not. R. Astron. Soc. 368, 1073–1077 (2006)
Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011)
Breddels, M. A. & Helmi, A. Model comparison of the dark matter profiles of Fornax, Sculptor, Carina and Sextans. Astron. Astrophys. 558, A35 (2013)
Wolf, J. et al. Accurate masses for dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 406, 1220–1237 (2010)
Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. The Milky Way’s bright satellites as an apparent failure of ΛCDM. Mon. Not. R. Astron. Soc. 422, 1203–1218 (2012)
Zolotov, A. et al. Baryons matter: why luminous satellite galaxies have reduced central masses. Astrophys. J. 761, 71 (2012)
Arraki, K. S., Klypin, A., More, S. & Trujillo-Gomez, S. Effects of baryon removal on the structure of dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. http://dx.doi.org/10.1093/mnras/stt2279 (in the press); preprint at http://arxiv.org/abs/1212.6651
Papastergis, E., Martin, A. M., Giovanelli, R. & Haynes, M. P. The velocity width function of galaxies from the 40% ALFALFA survey: shedding light on the cold dark matter overabundance problem. Astrophys. J. 739, 38 (2011)
Ferrero, I., Abadi, M. G., Navarro, J. F., Sales, L. V. & Gurovich, S. The dark matter haloes of dwarf galaxies: a challenge for the Λ cold dark matter paradigm? Mon. Not. R. Astron. Soc. 425, 2817–2823 (2012)
Kuzio de Naray, R. & Spekkens, K. Do baryons alter the halos of low surface brightness galaxies? Astrophys. J. 741, L29 (2011)
McGaugh, S. S., de Blok, W. J. G., Schombert, J. M., Kuzio de Naray, R. & Kim, J. H. The rotation velocity attributable to dark matter at intermediate radii in disk galaxies. Astrophys. J. 659, 149–161 (2007)
Gentile, G., Famaey, B., Zhao, H. & Salucci, P. Universality of galactic surface densities within one dark halo scale-length. Nature 461, 627–628 (2009)
Swaters, R. A., Sancisi, R., van Albada, T. S. & van der Hulst, J. M. Are dwarf galaxies dominated by dark matter? Astrophys. J. 729, 118 (2011)
Pérez, I., Aguerri, J. A. L. & Méndez-Abreu, J. Bar pattern speed evolution over the last 7 Gyr. Astron. Astrophys. 540, A103 (2012)
Debattista, V. P. & Sellwood, J. A. Dynamical friction and the distribution of dark matter in barred galaxies. Astrophys. J. 493, L5 (1998)
Newman, A. B., Treu, T., Ellis, R. S. & Sand, D. J. The density profiles of massive, relaxed galaxy clusters. II. Separating luminous and dark matter in cluster cores. Astrophys. J. 765, 25 (2013)
Dutton, A. A., Macciò, A. V., Mendel, J. T. & Simard, L. Universal IMF versus dark halo response in early-type galaxies: breaking the degeneracy with the fundamental plane. Mon. Not. R. Astron. Soc. 432, 2496–2511 (2013)
Navarro, J. F., Eke, V. R. & Frenk, C. S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 283, L72–L78 (1996)This work suggested that sufficiently violent gas disruption could change the behaviour of dark matter.
Read, J. I. & Gilmore, G. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107–124 (2005)
Pontzen, A. & Governato, F. How supernova feedback turns dark matter cusps into cores. Mon. Not. R. Astron. Soc. 421, 3464–3471 (2012)By using analytic modelling, we were able to link simulated dark matter cores44 to the physical behaviour of gas when star formation is concentrated and bursty.
Maxwell, A. J., Wadsley, J., Couchman, H. M. P. & Mashchenko, S. Building the stellar halo through feedback in dwarf galaxies. Astrophys. J. 755, L35 (2012)
Teyssier, R., Pontzen, A., Dubois, Y. & Read, J. I. Cusp-core transformations in dwarf galaxies: observational predictions. Mon. Not. R. Astron. Soc. 429, 3068–3078 (2013)
White, S. D. M. Dynamical friction in spherical clusters. Mon. Not. R. Astron. Soc. 174, 19–28 (1976)
El-Zant, A., Shlosman, I. & Hoffman, Y. Dark halos: the flattening of the density cusp by dynamical friction. Astrophys. J. 560, 636–643 (2001)
Tonini, C., Lapi, A. & Salucci, P. Angular momentum transfer in dark matter halos: erasing the cusp. Astrophys. J. 649, 591–598 (2006)
El-Zant, A. A., Hoffman, Y., Primack, J., Combes, F. & Shlosman, I. Flat-cored dark matter in cuspy clusters of galaxies. Astrophys. J. 607, L75–L78 (2004)
Gnedin, O. Y. & Zhao, H. Maximum feedback and dark matter profiles of dwarf galaxies. Mon. Not. R. Astron. Soc. 333, 299–306 (2002)
Mo, H. J. & Mao, S. Galaxy formation in pre-processed dark haloes. Mon. Not. R. Astron. Soc. 353, 829–840 (2004)
Read, J. I. & Gilmore, G. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107–124 (2005)
Weinberg, M. D. & Katz, N. Bar-driven dark halo evolution: a resolution of the cusp-core controversy. Astrophys. J. 580, 627–633 (2002)
Mashchenko, S., Couchman, H. M. P. & Wadsley, J. The removal of cusps from galaxy centres by stellar feedback in the early Universe. Nature 442, 539–542 (2006)
Mashchenko, S., Wadsley, J. & Couchman, H. M. P. Stellar feedback in dwarf galaxy formation. Science 319, 174–177 (2008)These authors presented the first self-consistent simulations in which galaxies lost their central cusps due to supernova feedback.
Saitoh, T. R. et al. Toward first-principle simulations of galaxy formation: I. How should we choose star-formation criteria in high-resolution simulations of disk galaxies? Pub. Astron. Soc. Jpn 60, 667–681 (2008)
Governato, F. et al. Cuspy no more: how outflows affect the central dark matter and baryon distribution in Λ cold dark matter galaxies. Mon. Not. R. Astron. Soc. 422, 1231–1240 (2012)
Munshi, F. et al. Reproducing the stellar mass/halo mass relation in simulated ΛCDM galaxies: theory vs observational estimates. Astrophys. J. 766, 56 (2013)
McQuinn, K. B. W. et al. The nature of starbursts. I. The star formation histories of eighteen nearby starburst dwarf galaxies. Astrophys. J. 721, 297–317 (2010)
Peñarrubia, J., Pontzen, A., Walker, M. G. & Koposov, S. E. The coupling between the core/cusp and missing satellite problems. Astrophys. J. 759, L42 (2012)
Macciò, A. V. et al. Halo expansion in cosmological hydro simulations: toward a baryonic solution of the cusp/core problem in massive spirals. Astrophys. J. 744, L9 (2012)
Kuhlen, M., Guedes, J., Pillepich, A., Madau, P. & Mayer, L. An off-center density peak in the Milky Way’s dark matter halo? Astrophys. J. 765, 10 (2013)
Di Cintio, A. et al. The dependence of dark matter profiles on the stellar to halo mass ratio: a prediction for cusps vs cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014)
Martizzi, D., Teyssier, R., Moore, B. & Wentz, T. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies. Mon. Not. R. Astron. Soc. 422, 3081–3091 (2012)
Dalcanton, J. J. & Hogan, C. J. Halo cores and phase-space densities: observational constraints on dark matter physics and structure formation. Astrophys. J. 561, 35–45 (2001)
Menci, N., Fiore, F. & Lamastra, A. Galaxy formation in warm dark matter cosmology. Mon. Not. R. Astron. Soc. 421, 2384–2394 (2012)
Knebe, A., Devriendt, J. E. G., Mahmood, A. & Silk, J. Merger histories in warm dark matter structure formation scenarios. Mon. Not. R. Astron. Soc. 329, 813–828 (2002)
Viel, M., Becker, G. D., Bolton, J. S. & Haehnelt, M. G. Warm dark matter as a solution to the small scale crisis: new constraints from high redshift Lyman-α forest data. Phys. Rev. D 88, 043502 (2013)
Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000)
Peter, A. H. G., Rocha, M., Bullock, J. S. & Kaplinghat, M. Cosmological simulations with self-interacting dark matter. II: Halo shapes vs. observations. Mon. Not. R. Astron. Soc. 430, 105–120 (2013)
Zavala, J., Vogelsberger, M. & Walker, M. G. Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals. Mon. Not. R. Astron. Soc. 431, L20–L24 (2013)
Tulin, S., Yu, H.-B. & Zurek, K. M. Resonant dark forces and small scale structure. Phys. Rev. Lett. 110, 111301 (2013)
Kaplinghat, M., Knox, L. & Turner, M. S. Annihilating cold dark matter. Phys. Rev. Lett. 85, 3335–3338 (2000)
Peter, A. H. G., Moody, C. E. & Kamionkowski, M. Dark-matter decays and self-gravitating halos. Phys. Rev. D 81, 103501 (2010)
Sin, S.-J. Late-time phase transition and the galactic halo as a Bose liquid. Phys. Rev. D 50, 3650–3654 (1994)
Herpich, J. et al. MaGICC-WDM: the effects of warm dark matter in hydrodynamical simulations of disc galaxy formation. Mon. Not. R. Astron. Soc. 437, 293–304 (2014)
Christensen, C. et al. Implementing molecular hydrogen in hydrodynamic simulations of galaxy formation. Mon. Not. R. Astron. Soc. 425, 3058–3076 (2012)
Macciò, A. et al. Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment. Mon. Not. R. Astron. Soc. 378, 55–71 (2007)
Acknowledgements
We thank S.-H. Oh, S. White, M. Pettini, C. Martin, M. Walker, J. Peñarrubia, A. Brooks, T. Treu, R. Ellis, J. Wadsley and L. Randall for discussions and comments on an early draft. A.P. acknowledges support from the Oxford Martin School and Royal Society. F.G. acknowledges support from HST GO-1125 and NSF AST-0908499.
Author information
Authors and Affiliations
Contributions
A.P. and F.G. jointly wrote the Review.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Pontzen, A., Governato, F. Cold dark matter heats up. Nature 506, 171–178 (2014). https://doi.org/10.1038/nature12953
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature12953
This article is cited by
-
Stellar dynamics and dark matter in Local Group dwarf galaxies
Nature Astronomy (2022)
-
A universal constant for dark matter-baryon interplay
Scientific Reports (2019)
-
A Comment on ‘Cosmology and Convention’ by David Merritt
Journal for General Philosophy of Science (2019)
-
Dark matter self-interactions from the internal dynamics of dwarf spheroidals
Nature Astronomy (2018)
-
Production of dark-matter bound states in the early universe by three-body recombination
Journal of High Energy Physics (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.