Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cold dark matter heats up

Abstract

A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density ‘cores’ of dark matter measured at the centre of galaxies, where centrally concentrated high-density ‘cusps’ were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Outflowing gas is ubiquitous around galaxies.
Figure 2: Constant-density cores of dark matter in dwarf galaxies.
Figure 3: Dark matter cores are only generated in sufficiently bright galaxies.

References

  1. 1

    The Planck Collaboration et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. (in the press); preprint at http://arxiv.org/abs/1303.5076

  2. 2

    Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Percival, W. J. et al. The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe. Mon. Not. R. Astron. Soc. 327, 1297–1306 (2001)

    ADS  Article  Google Scholar 

  4. 4

    White, S. D. M. & Rees, M. J. Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)This paper established the paradigm in which visible galaxies form in the gravitational potential carved out by dark matter halos.

    ADS  Article  Google Scholar 

  5. 5

    White, S. D. M., Frenk, C. S. & Davis, M. Clustering in a neutrino-dominated universe. Astrophys. J. 274, L1–L5 (1983)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996)This work emphasized the universality of the behaviour of simulated dark matter structures, including a central ‘cusp’, irrespective of scale.

    ADS  CAS  Article  Google Scholar 

  7. 7

    Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, L19–L22 (1999)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Mateo, M. L. Dwarf galaxies of the Local Group. Annu. Rev. Astron. Astrophys. 36, 435–506 (1998)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Dubinski, J. & Carlberg, R. G. The structure of cold dark matter halos. Astrophys. J. 378, 496–503 (1991)This early paper clearly identified the ‘cusp’ in simulations of the behaviour of cold dark matter.

    ADS  CAS  Article  Google Scholar 

  11. 11

    Moore, B., Governato, F., Quinn, T., Stadel, J. & Lake, G. Resolving the structure of cold dark matter halos. Astrophys. J. 499, L5–L8 (1998)

    ADS  Article  Google Scholar 

  12. 12

    de Blok, W. J. G. et al. High-resolution rotation curves and galaxy mass models from THINGS. Astron. J. 136, 2648–2719 (2008)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Springel, V. et al. The Aquarius Project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008)

    ADS  Article  Google Scholar 

  14. 14

    Stadel, J. et al. Quantifying the heart of darkness with GHALO—a multibillion particle simulation of a galactic halo. Mon. Not. R. Astron. Soc. 398, L21–L25 (2009)

    ADS  Article  Google Scholar 

  15. 15

    Bell, E. F. & de Jong, R. S. Stellar mass-to-light ratios and the Tully-Fisher relation. Astrophys. J. 550, 212–229 (2001)

    ADS  Article  Google Scholar 

  16. 16

    Gnedin, N. Y., Tassis, K. & Kravtsov, A. V. Modeling molecular hydrogen and star formation in cosmological simulations. Astrophys. J. 697, 55–67 (2009)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Wise, J. H. & Abel, T. ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing. Mon. Not. R. Astron. Soc. 414, 3458–3491 (2011)

    ADS  Article  Google Scholar 

  18. 18

    Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002)

    ADS  Article  Google Scholar 

  19. 19

    Kereš, D., Vogelsberger, M., Sijacki, D., Springel, V. & Hernquist, L. Moving-mesh cosmology: characteristics of galaxies and haloes. Mon. Not. R. Astron. Soc. 425, 2027–2048 (2012)

    ADS  Article  Google Scholar 

  20. 20

    Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006)

    ADS  Article  Google Scholar 

  21. 21

    Bower, R. G. et al. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 370, 645–655 (2006)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Stinson, G. et al. Star formation and feedback in smoothed particle hydrodynamic simulations—I. Isolated galaxies. Mon. Not. R. Astron. Soc. 373, 1074–1090 (2006)

    ADS  Article  Google Scholar 

  23. 23

    Hopkins, P. F., Quataert, E. & Murray, N. Stellar feedback in galaxies and the origin of galaxy-scale winds. Mon. Not. R. Astron. Soc. 421, 3522–3537 (2012)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Robertson, B. et al. A merger-driven scenario for cosmological disk galaxy formation. Astrophys. J. 645, 986–1000 (2006)

    ADS  Article  Google Scholar 

  25. 25

    Kereš, D., Katz, N., Weinberg, D. H. & Davé, R. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005)

    ADS  Article  CAS  Google Scholar 

  26. 26

    Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Blumenthal, G. R., Faber, S. M., Flores, R. & Primack, J. R. Contraction of dark matter galactic halos due to baryonic infall. Astrophys. J. 301, 27–34 (1986)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Shapley, A. E., Steidel, C. C., Pettini, M. & Adelberger, K. L. Rest-frame ultraviolet spectra of z3 Lyman break galaxies. Astrophys. J. 588, 65–89 (2003)

    ADS  Article  Google Scholar 

  29. 29

    Weiner, B. J. et al. Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z = 1.4. Astrophys. J. 692, 187–211 (2009)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Martin, C. L. et al. Demographics and physical properties of gas out/inflows at 0.4. Astrophys. J. 760, 127 (2012)

    ADS  Article  CAS  Google Scholar 

  31. 31

    Steidel, C. C. et al. The structure and kinematics of the circumgalactic medium from far-ultraviolet spectra of z = 2–3 galaxies. Astrophys. J. 717, 289–322 (2010)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Heckman, T. M., Lehnert, M. D., Strickland, D. K. & Armus, L. Absorption-line probes of gas and dust in galactic superwinds. Astrophys. J. (Suppl.). 129, 493–516 (2000)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Mac Low, M. & Ferrara, A. Starburst-driven mass loss from dwarf galaxies: efficiency and metal ejection. Astrophys. J. 513, 142–155 (1999)

    ADS  Article  Google Scholar 

  34. 34

    Murray, N., Quataert, E. & Thompson, T. A. The disruption of giant molecular clouds by radiation pressure and the efficiency of star formation in galaxies. Astrophys. J. 709, 191–209 (2010)

    ADS  Article  Google Scholar 

  35. 35

    van der Wel, A. et al. Extreme emission-line galaxies in CANDELS: broadband-selected, starbursting dwarf galaxies at z > 1. Astrophys. J. 742, 111 (2011)

    ADS  Article  CAS  Google Scholar 

  36. 36

    Rubin, K. H. R. et al. The persistence of cool galactic winds in high stellar mass galaxies between z 1.4 and 1. Astrophys. J. 719, 1503–1525 (2010)

    ADS  Article  Google Scholar 

  37. 37

    Rubin, K. H. R., Prochaska, J. X., Koo, D. C. & Phillips, A. C. The direct detection of cool, metal-enriched gas accretion onto galaxies at z 0.5. Astrophys. J. 747, L26 (2012)

    ADS  Article  CAS  Google Scholar 

  38. 38

    Shen, S., Wadsley, J. & Stinson, G. The enrichment of the intergalactic medium with adiabatic feedback—I. Metal cooling and metal diffusion. Mon. Not. R. Astron. Soc. 407, 1581–1596 (2010)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Dutton, A. A. On the origin of exponential galaxy discs. Mon. Not. R. Astron. Soc. 396, 121–140 (2009)

    ADS  Article  Google Scholar 

  40. 40

    Kormendy, J., Drory, N., Bender, R. & Cornell, M. E. Bulgeless giant galaxies challenge our picture of galaxy formation by hierarchical clustering. Astrophys. J. 723, 54–80 (2010)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Barnes, J. & Efstathiou, G. Angular momentum from tidal torques. Astrophys. J. 319, 575–600 (1987)

    ADS  Article  Google Scholar 

  42. 42

    van den Bosch, F. C., Burkert, A. & Swaters, R. A. The angular momentum content of dwarf galaxies: new challenges for the theory of galaxy formation. Mon. Not. R. Astron. Soc. 326, 1205–1215 (2001)

    ADS  Article  Google Scholar 

  43. 43

    Binney, J., Gerhard, O. & Silk, J. The dark matter problem in disc galaxies. Mon. Not. R. Astron. Soc. 321, 471–474 (2001)

    ADS  Article  Google Scholar 

  44. 44

    Governato, F. et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 463, 203–206 (2010)This work produced, for the first time, a simulated dwarf galaxy with stellar and dark matter distribution consistent with modern day observations.

    ADS  CAS  PubMed  Article  Google Scholar 

  45. 45

    Brook, C. B. et al. Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum. Mon. Not. R. Astron. Soc. 415, 1051–1060 (2011)

    ADS  Article  Google Scholar 

  46. 46

    Flores, R. A. & Primack, J. R. Observational and theoretical constraints on singular dark matter halos. Astrophys. J. 427, L1–L4 (1994)

    ADS  Article  Google Scholar 

  47. 47

    Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629–631 (1994)These two papers (refs 46 and 47) pointed out the great difficulty in reconciling theoretical predictions of dark matter in dwarf galaxies with observations.

    ADS  Article  Google Scholar 

  48. 48

    Simon, J. D., Bolatto, A. D., Leroy, A., Blitz, L. & Gates, E. L. High-resolution measurements of the halos of four dark matter-dominated galaxies: deviations from a universal density profile. Astrophys. J. 621, 757–776 (2005)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Swaters, R. A., Madore, B. F., van den Bosch, F. C. & Balcells, M. The central mass distribution in dwarf and low surface brightness galaxies. Astrophys. J. 583, 732–751 (2003)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Oh, S.-H., de Blok, W. J. G., Brinks, E., Walter, F. & Kennicutt, R. C., Jr Dark and luminous matter in THINGS dwarf galaxies. Astron. J. 141, 193 (2011)

    ADS  Article  CAS  Google Scholar 

  51. 51

    Oh, S.-H. et al. The central slope of dark matter cores in dwarf galaxies: simulations versus THINGS. Astron. J. 142, 24 (2011)

    ADS  Article  Google Scholar 

  52. 52

    Walter, F. et al. THINGS: The H I nearby galaxy survey. Astron. J. 136, 2563–2647 (2008)

    ADS  CAS  Article  Google Scholar 

  53. 53

    Hunter, D. A. et al. LITTLE THINGS. Astron. J. 144, 134 (2012)

    ADS  Article  Google Scholar 

  54. 54

    Mayer, L. et al. The metamorphosis of tidally stirred dwarf galaxies. Astrophys. J. 559, 754–784 (2001)

    ADS  Article  Google Scholar 

  55. 55

    Nierenberg, A. M. et al. Luminous satellites. II. Spatial distribution, luminosity function, and cosmic evolution. Astrophys. J. 752, 99 (2012)

    ADS  Article  Google Scholar 

  56. 56

    Strigari, L. E. et al. A common mass scale for satellite galaxies of the Milky Way. Nature 454, 1096–1097 (2008)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Goerdt, T., Moore, B., Read, J. I., Stadel, J. & Zemp, M. Does the Fornax dwarf spheroidal have a central cusp or core? Mon. Not. R. Astron. Soc. 368, 1073–1077 (2006)

    ADS  Article  Google Scholar 

  58. 58

    Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011)

    ADS  Article  Google Scholar 

  59. 59

    Breddels, M. A. & Helmi, A. Model comparison of the dark matter profiles of Fornax, Sculptor, Carina and Sextans. Astron. Astrophys. 558, A35 (2013)

    ADS  Article  Google Scholar 

  60. 60

    Wolf, J. et al. Accurate masses for dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 406, 1220–1237 (2010)

    ADS  Google Scholar 

  61. 61

    Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. The Milky Way’s bright satellites as an apparent failure of ΛCDM. Mon. Not. R. Astron. Soc. 422, 1203–1218 (2012)

    ADS  Article  Google Scholar 

  62. 62

    Zolotov, A. et al. Baryons matter: why luminous satellite galaxies have reduced central masses. Astrophys. J. 761, 71 (2012)

    ADS  Article  CAS  Google Scholar 

  63. 63

    Arraki, K. S., Klypin, A., More, S. & Trujillo-Gomez, S. Effects of baryon removal on the structure of dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. http://dx.doi.org/10.1093/mnras/stt2279 (in the press); preprint at http://arxiv.org/abs/1212.6651

  64. 64

    Papastergis, E., Martin, A. M., Giovanelli, R. & Haynes, M. P. The velocity width function of galaxies from the 40% ALFALFA survey: shedding light on the cold dark matter overabundance problem. Astrophys. J. 739, 38 (2011)

    ADS  Article  Google Scholar 

  65. 65

    Ferrero, I., Abadi, M. G., Navarro, J. F., Sales, L. V. & Gurovich, S. The dark matter haloes of dwarf galaxies: a challenge for the Λ cold dark matter paradigm? Mon. Not. R. Astron. Soc. 425, 2817–2823 (2012)

    ADS  Article  Google Scholar 

  66. 66

    Kuzio de Naray, R. & Spekkens, K. Do baryons alter the halos of low surface brightness galaxies? Astrophys. J. 741, L29 (2011)

    ADS  Article  Google Scholar 

  67. 67

    McGaugh, S. S., de Blok, W. J. G., Schombert, J. M., Kuzio de Naray, R. & Kim, J. H. The rotation velocity attributable to dark matter at intermediate radii in disk galaxies. Astrophys. J. 659, 149–161 (2007)

    ADS  CAS  Article  Google Scholar 

  68. 68

    Gentile, G., Famaey, B., Zhao, H. & Salucci, P. Universality of galactic surface densities within one dark halo scale-length. Nature 461, 627–628 (2009)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69

    Swaters, R. A., Sancisi, R., van Albada, T. S. & van der Hulst, J. M. Are dwarf galaxies dominated by dark matter? Astrophys. J. 729, 118 (2011)

    ADS  Article  Google Scholar 

  70. 70

    Pérez, I., Aguerri, J. A. L. & Méndez-Abreu, J. Bar pattern speed evolution over the last 7 Gyr. Astron. Astrophys. 540, A103 (2012)

    ADS  Article  Google Scholar 

  71. 71

    Debattista, V. P. & Sellwood, J. A. Dynamical friction and the distribution of dark matter in barred galaxies. Astrophys. J. 493, L5 (1998)

    ADS  Article  Google Scholar 

  72. 72

    Newman, A. B., Treu, T., Ellis, R. S. & Sand, D. J. The density profiles of massive, relaxed galaxy clusters. II. Separating luminous and dark matter in cluster cores. Astrophys. J. 765, 25 (2013)

    ADS  Article  Google Scholar 

  73. 73

    Dutton, A. A., Macciò, A. V., Mendel, J. T. & Simard, L. Universal IMF versus dark halo response in early-type galaxies: breaking the degeneracy with the fundamental plane. Mon. Not. R. Astron. Soc. 432, 2496–2511 (2013)

    ADS  Article  Google Scholar 

  74. 74

    Navarro, J. F., Eke, V. R. & Frenk, C. S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 283, L72–L78 (1996)This work suggested that sufficiently violent gas disruption could change the behaviour of dark matter.

    ADS  CAS  Article  Google Scholar 

  75. 75

    Read, J. I. & Gilmore, G. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107–124 (2005)

    ADS  Article  Google Scholar 

  76. 76

    Pontzen, A. & Governato, F. How supernova feedback turns dark matter cusps into cores. Mon. Not. R. Astron. Soc. 421, 3464–3471 (2012)By using analytic modelling, we were able to link simulated dark matter cores44 to the physical behaviour of gas when star formation is concentrated and bursty.

    ADS  Article  Google Scholar 

  77. 77

    Maxwell, A. J., Wadsley, J., Couchman, H. M. P. & Mashchenko, S. Building the stellar halo through feedback in dwarf galaxies. Astrophys. J. 755, L35 (2012)

    ADS  Article  Google Scholar 

  78. 78

    Teyssier, R., Pontzen, A., Dubois, Y. & Read, J. I. Cusp-core transformations in dwarf galaxies: observational predictions. Mon. Not. R. Astron. Soc. 429, 3068–3078 (2013)

    ADS  Article  Google Scholar 

  79. 79

    White, S. D. M. Dynamical friction in spherical clusters. Mon. Not. R. Astron. Soc. 174, 19–28 (1976)

    ADS  Article  Google Scholar 

  80. 80

    El-Zant, A., Shlosman, I. & Hoffman, Y. Dark halos: the flattening of the density cusp by dynamical friction. Astrophys. J. 560, 636–643 (2001)

    ADS  Article  Google Scholar 

  81. 81

    Tonini, C., Lapi, A. & Salucci, P. Angular momentum transfer in dark matter halos: erasing the cusp. Astrophys. J. 649, 591–598 (2006)

    ADS  Article  Google Scholar 

  82. 82

    El-Zant, A. A., Hoffman, Y., Primack, J., Combes, F. & Shlosman, I. Flat-cored dark matter in cuspy clusters of galaxies. Astrophys. J. 607, L75–L78 (2004)

    ADS  CAS  Article  Google Scholar 

  83. 83

    Gnedin, O. Y. & Zhao, H. Maximum feedback and dark matter profiles of dwarf galaxies. Mon. Not. R. Astron. Soc. 333, 299–306 (2002)

    ADS  Article  Google Scholar 

  84. 84

    Mo, H. J. & Mao, S. Galaxy formation in pre-processed dark haloes. Mon. Not. R. Astron. Soc. 353, 829–840 (2004)

    ADS  Article  Google Scholar 

  85. 85

    Read, J. I. & Gilmore, G. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107–124 (2005)

    ADS  Article  Google Scholar 

  86. 86

    Weinberg, M. D. & Katz, N. Bar-driven dark halo evolution: a resolution of the cusp-core controversy. Astrophys. J. 580, 627–633 (2002)

    ADS  Article  Google Scholar 

  87. 87

    Mashchenko, S., Couchman, H. M. P. & Wadsley, J. The removal of cusps from galaxy centres by stellar feedback in the early Universe. Nature 442, 539–542 (2006)

    ADS  CAS  PubMed  Article  Google Scholar 

  88. 88

    Mashchenko, S., Wadsley, J. & Couchman, H. M. P. Stellar feedback in dwarf galaxy formation. Science 319, 174–177 (2008)These authors presented the first self-consistent simulations in which galaxies lost their central cusps due to supernova feedback.

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Saitoh, T. R. et al. Toward first-principle simulations of galaxy formation: I. How should we choose star-formation criteria in high-resolution simulations of disk galaxies? Pub. Astron. Soc. Jpn 60, 667–681 (2008)

    ADS  Article  Google Scholar 

  90. 90

    Governato, F. et al. Cuspy no more: how outflows affect the central dark matter and baryon distribution in Λ cold dark matter galaxies. Mon. Not. R. Astron. Soc. 422, 1231–1240 (2012)

    ADS  CAS  Article  Google Scholar 

  91. 91

    Munshi, F. et al. Reproducing the stellar mass/halo mass relation in simulated ΛCDM galaxies: theory vs observational estimates. Astrophys. J. 766, 56 (2013)

    ADS  Article  Google Scholar 

  92. 92

    McQuinn, K. B. W. et al. The nature of starbursts. I. The star formation histories of eighteen nearby starburst dwarf galaxies. Astrophys. J. 721, 297–317 (2010)

    ADS  Article  Google Scholar 

  93. 93

    Peñarrubia, J., Pontzen, A., Walker, M. G. & Koposov, S. E. The coupling between the core/cusp and missing satellite problems. Astrophys. J. 759, L42 (2012)

    ADS  Article  Google Scholar 

  94. 94

    Macciò, A. V. et al. Halo expansion in cosmological hydro simulations: toward a baryonic solution of the cusp/core problem in massive spirals. Astrophys. J. 744, L9 (2012)

    ADS  Article  CAS  Google Scholar 

  95. 95

    Kuhlen, M., Guedes, J., Pillepich, A., Madau, P. & Mayer, L. An off-center density peak in the Milky Way’s dark matter halo? Astrophys. J. 765, 10 (2013)

    ADS  Article  CAS  Google Scholar 

  96. 96

    Di Cintio, A. et al. The dependence of dark matter profiles on the stellar to halo mass ratio: a prediction for cusps vs cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014)

    ADS  Article  Google Scholar 

  97. 97

    Martizzi, D., Teyssier, R., Moore, B. & Wentz, T. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies. Mon. Not. R. Astron. Soc. 422, 3081–3091 (2012)

    ADS  CAS  Article  Google Scholar 

  98. 98

    Dalcanton, J. J. & Hogan, C. J. Halo cores and phase-space densities: observational constraints on dark matter physics and structure formation. Astrophys. J. 561, 35–45 (2001)

    ADS  Article  Google Scholar 

  99. 99

    Menci, N., Fiore, F. & Lamastra, A. Galaxy formation in warm dark matter cosmology. Mon. Not. R. Astron. Soc. 421, 2384–2394 (2012)

    ADS  Article  Google Scholar 

  100. 100

    Knebe, A., Devriendt, J. E. G., Mahmood, A. & Silk, J. Merger histories in warm dark matter structure formation scenarios. Mon. Not. R. Astron. Soc. 329, 813–828 (2002)

    ADS  Article  Google Scholar 

  101. 101

    Viel, M., Becker, G. D., Bolton, J. S. & Haehnelt, M. G. Warm dark matter as a solution to the small scale crisis: new constraints from high redshift Lyman-α forest data. Phys. Rev. D 88, 043502 (2013)

    ADS  Article  CAS  Google Scholar 

  102. 102

    Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103

    Peter, A. H. G., Rocha, M., Bullock, J. S. & Kaplinghat, M. Cosmological simulations with self-interacting dark matter. II: Halo shapes vs. observations. Mon. Not. R. Astron. Soc. 430, 105–120 (2013)

    ADS  Article  Google Scholar 

  104. 104

    Zavala, J., Vogelsberger, M. & Walker, M. G. Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals. Mon. Not. R. Astron. Soc. 431, L20–L24 (2013)

    ADS  Article  Google Scholar 

  105. 105

    Tulin, S., Yu, H.-B. & Zurek, K. M. Resonant dark forces and small scale structure. Phys. Rev. Lett. 110, 111301 (2013)

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  106. 106

    Kaplinghat, M., Knox, L. & Turner, M. S. Annihilating cold dark matter. Phys. Rev. Lett. 85, 3335–3338 (2000)

    ADS  CAS  PubMed  Article  Google Scholar 

  107. 107

    Peter, A. H. G., Moody, C. E. & Kamionkowski, M. Dark-matter decays and self-gravitating halos. Phys. Rev. D 81, 103501 (2010)

    ADS  Article  CAS  Google Scholar 

  108. 108

    Sin, S.-J. Late-time phase transition and the galactic halo as a Bose liquid. Phys. Rev. D 50, 3650–3654 (1994)

    ADS  CAS  Article  Google Scholar 

  109. 109

    Herpich, J. et al. MaGICC-WDM: the effects of warm dark matter in hydrodynamical simulations of disc galaxy formation. Mon. Not. R. Astron. Soc. 437, 293–304 (2014)

    ADS  Article  Google Scholar 

  110. 110

    Christensen, C. et al. Implementing molecular hydrogen in hydrodynamic simulations of galaxy formation. Mon. Not. R. Astron. Soc. 425, 3058–3076 (2012)

    ADS  Article  Google Scholar 

  111. 111

    Macciò, A. et al. Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment. Mon. Not. R. Astron. Soc. 378, 55–71 (2007)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank S.-H. Oh, S. White, M. Pettini, C. Martin, M. Walker, J. Peñarrubia, A. Brooks, T. Treu, R. Ellis, J. Wadsley and L. Randall for discussions and comments on an early draft. A.P. acknowledges support from the Oxford Martin School and Royal Society. F.G. acknowledges support from HST GO-1125 and NSF AST-0908499.

Author information

Affiliations

Authors

Contributions

A.P. and F.G. jointly wrote the Review.

Corresponding author

Correspondence to Andrew Pontzen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pontzen, A., Governato, F. Cold dark matter heats up. Nature 506, 171–178 (2014). https://doi.org/10.1038/nature12953

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing