Exceptional ballistic transport in epitaxial graphene nanoribbons


Graphene nanoribbons will be essential components in future graphene nanoelectronics1. However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about ten nanometres between scattering events, resulting in minimum sheet resistances of about one kilohm per square2,3,4,5. Here we show that 40-nanometre-wide graphene nanoribbons epitaxially grown on silicon carbide6,7 are single-channel room-temperature ballistic conductors on a length scale greater than ten micrometres, which is similar to the performance of metallic carbon nanotubes. This is equivalent to sheet resistances below 1 ohm per square, surpassing theoretical predictions for perfect graphene8 by at least an order of magnitude. In neutral graphene ribbons, we show that transport is dominated by two modes. One is ballistic and temperature independent; the other is thermally activated. Transport is protected from back-scattering, possibly reflecting ground-state properties of neutral graphene. At room temperature, the resistance of both modes is found to increase abruptly at a particular length—the ballistic mode at 16 micrometres and the other at 160 nanometres. Our epitaxial graphene nanoribbons will be important not only in fundamental science, but also—because they can be readily produced in thousands—in advanced nanoelectronics, which can make use of their room-temperature ballistic transport properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and characterization of nanoribbons and devices.
Figure 2: Scanning tunnelling analysis of ex situ produced sidewall ribbons similar to those used in fixed geometry transport measurements.
Figure 3: Multiprobe in situ transport measurements of sidewall ribbons.
Figure 4: Gated ribbon transport (see Fig. 1c).
Figure 5: Comparison with other work.


  1. 1

    Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    CAS  Article  Google Scholar 

  2. 2

    Han, M. Y. Özyilmaz, B. Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    ADS  Article  Google Scholar 

  3. 3

    Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010)

    ADS  Article  Google Scholar 

  4. 4

    Chen, Z. H., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Todd, K., Chou, H. T., Amasha, S. & Goldhaber-Gordon, D. Quantum dot behavior in graphene nanoconstrictions. Nano Lett. 9, 416–421 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Sprinkle, M. et al. Scalable templated growth of graphene nanoribbons on SiC. Nature Nanotechnol. 5, 727–731 (2010)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Ruan, M. Structured Epitaxial Graphene for Electronics. PhD thesis, Georgia Inst. Technol. (2012); available at http://hdl.handle.net/1853/45596

  8. 8

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995)

    Google Scholar 

  11. 11

    Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Wakabayashi, K., Takane, Y. & Sigrist, M. Perfectly conducting channel and universality crossover in disordered graphene nanoribbons. Phys. Rev. Lett. 99, 036601 (2007)

    ADS  Article  Google Scholar 

  13. 13

    Frank, S., Poncharal, P., Wang, Z. L. & de Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998)

    ADS  CAS  Article  Google Scholar 

  14. 14

    de Heer, W. A. et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl Acad. Sci. 108, 16900–16905 (2011)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Hu, Y. et al. Structured epitaxial graphene: growth and properties. J. Phys D 45, 154010 (2012)

    ADS  Article  Google Scholar 

  16. 16

    Hicks, J. et al. A wide-bandgap metal–semiconductor–metal nanostructure made entirely from graphene. Nature Phys. 9, 49–54 (2013)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Norimatsu, W. & Kusunoki, M. Formation process of graphene on SiC (0001). Physica E 42, 691–694 (2010)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Büttiker, M. Four terminal phase coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)

    ADS  Article  Google Scholar 

  19. 19

    de Picciotto, R., Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. W. Four-terminal resistance of a ballistic quantum wire. Nature 411, 51–54 (2001)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Tombros, N. et al. Quantized conductance of a suspended graphene nanoconstriction. Nature Phys. 7, 697–700 (2011)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Huard, B. et al. Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Mott, N. F. Conduction in non-crystalline materials. III. Localized states in a pseudogap and near extremities of conduction and valence bands. Phil. Mag. 19, 835–852 (1969)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Schonenberger, C., Bachtold, A., Strunk, C., Salvetat J. P & Forro, L. Interference and interaction in multi-wall carbon nanotubes. Appl. Phys. A 69, 283–295 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Chen, J. H., Jang, C., Xiao, S. D., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotechnol. 3, 206–209 (2008)

    CAS  Article  Google Scholar 

  26. 26

    Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Huard, B., Stander, N., Sulpizio, J. A. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B 78, 121402R (2008)

    ADS  Article  Google Scholar 

  28. 28

    Lemme, M., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field effect device. IEEE Electron Device Lett. 28, 282–284 (2007)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Lin, Y. M., Perebeinos, V., Chen, Z. H. & Avouris, P. Electrical observation of subband formation in graphene nanoribbons. Phys Rev B 78, 161409(R) (2008)

    ADS  Article  Google Scholar 

  30. 30

    Wang, X. R. et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nature Nanotechnol. 6, 563–567 (2011)

    ADS  CAS  Article  Google Scholar 

Download references


C.T. thanks the German Research Foundation Priority Program 1459 ‘Graphene’ for financial support. C.B., E.H.C. and W.A.d.H. thank R. Dong, P. Goldbart, Z. Guo, J. Hankinson, J. Hicks, Y. Hu, J. Kunc, M. Kindermann, D. Mayou, M. Nevius, J. Palmer, A. Sidorov and P. de Heer for assistance and comments. C.B., E.H.C. and W.A.d.H. thank the AFOSR, NSF (MRSEC – DMR 0820382), W. M. Keck Foundation and Partner University Fund for financial support. Work at ORNL was supported by the Scientific User Facilities Division, BES of the DOE.

Author information




J.B. and F.E. produced samples and performed the in situ transport experiments in Hannover relating to Fig. 3. C.T. performed and supervised the transport experiments in Fig. 3, discussed the data and commented on the paper. M.R. produced the samples and performed transport experiments shown in Fig. 4 and Supplementary Figs 3–6. E.H.C., A.T. and A.T.-I. performed ARPES experiments, and A.T. and M.S. the STM and STS experiments. Z.J. performed confirming spin transport measurements and contributed to C-AFM results shown in Supplementary Fig. 6b. A.-P.L. performed earlier SPM measurements. W.A.d.H. conceived and supervised the experiment and interpreted the data. C.B. supervised and performed the Atlanta based experiments. W.A.d.H. and C.B. wrote the paper.

Corresponding author

Correspondence to Walt A. de Heer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related audio

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-12, Supplementary Table 1 and Supplementary References. (PDF 4427 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baringhaus, J., Ruan, M., Edler, F. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349–354 (2014). https://doi.org/10.1038/nature12952

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing