Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mosaic two-lengthscale quasicrystals

Abstract

Over the past decade, quasicrystalline order1 has been observed in many soft-matter systems: in dendritic micelles2, in star3 and tetrablock4 terpolymer melts and in diblock copolymer5 and surfactant micelles6. The formation of quasicrystals7,8,9 from such a broad range of ‘soft’ macromolecular micelles suggests that they assemble by a generic mechanism rather than being dependent on the specific chemistry of each system. Indeed, micellar softness has been postulated7 and shown to lead to quasicrystalline order10. Here we theoretically explore this link by studying two-dimensional hard disks decorated with step-like square-shoulder repulsion that mimics, for example, the soft alkyl shell around the aromatic core in dendritic micelles2. We find a family of quasicrystals with 10-, 12-, 18- and 24-fold bond orientational order which originate from mosaics of equilateral and isosceles triangles formed by particles arranged core-to-core and shoulder-to-shoulder. The pair interaction responsible for these phases highlights the role of local packing geometry in generating quasicrystallinity in soft matter, complementing the principles that lead to quasicrystal formation in hard tetrahedra11,12. Based on simple interparticle potentials, quasicrystalline mosaics may well find use in diverse applications ranging from improved image reproduction13 to advanced photonic materials14.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Real-space structures and diffraction patterns.
Figure 2: Bond orientational order.
Figure 3: Two-lengthscale triangle tilings.

References

  1. Levine, D. & Steinhardt, P. J. Quasicrystals—a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984)

    ADS  CAS  Article  Google Scholar 

  2. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004)

    ADS  CAS  Article  Google Scholar 

  3. Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007)

    ADS  Article  Google Scholar 

  4. Zhang, J. & Bates, F. S. Dodecagonal quasicrystalline morphology in a poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) tetrablock terpolymer. J. Am. Chem. Soc. 134, 7636–7639 (2012)

    CAS  Article  Google Scholar 

  5. Fischer, S. et al. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proc. Natl Acad. Sci. USA 108, 1810–1814 (2011)

    ADS  CAS  Article  Google Scholar 

  6. Xiao, C., Fujita, N., Miyasaka, K., Sakamoto, Y. & Terasaki, O. Dodecagonal tiling in mesoporous silica. Nature 487, 349–353 (2012)

    ADS  CAS  Article  Google Scholar 

  7. Ungar, G. & Zeng, X. Frank-Kasper, quasicrystalline and related phases in liquid crystals. Soft Matter 1, 95–106 (2005)

    ADS  CAS  Article  Google Scholar 

  8. Lifshitz, R. & Diamant, H. Soft quasicrystals—why are they stable? Phil. Mag. 87, 3021–3030 (2007)

    ADS  CAS  Article  Google Scholar 

  9. Mikhael, J., Roth, J., Helden, L. & Bechinger, C. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454, 501–504 (2008)

    ADS  CAS  Article  Google Scholar 

  10. Iacovella, C. R., Keys, A. S. & Glotzer, S. C. Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl Acad. Sci. USA 108, 20935–20940 (2011)

    ADS  CAS  Article  Google Scholar 

  11. Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009)

    ADS  CAS  Article  Google Scholar 

  12. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012)

    ADS  CAS  Article  Google Scholar 

  13. Steinhardt, P. J. & Taylor, P. Methods and apparatus for eliminating moiré interference using quasiperiodic patterns. US Patent Number 4,894,726. (16 January 1989)

  14. Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J. & Netti, M. C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Grünbaum, B. & Shephard, G. C. Tilings and Patterns Ch. 10 (Freeman, 1986)

    MATH  Google Scholar 

  16. Barkan, K., Diamant, H. & Lifshitz, R. Stability of quasicrystals composed of soft isotropic particles. Phys. Rev. B 83, 172201 (2011)

    ADS  Article  Google Scholar 

  17. Skibinsky, A., Buldyrev, S. V., Scala, A., Havlin, S. & Stanley, H. E. Quasicrystals in a monodisperse system. Phys. Rev. E 60, 2664–2669 (1999)

    ADS  CAS  Article  Google Scholar 

  18. Jagla, E. A. Phase behavior of a system of particles with core collapse. Phys. Rev. E 58, 1478–1486 (1998)

    ADS  CAS  Article  Google Scholar 

  19. Engel, M. & Trebin, H.-R. Self-assembly of monatomic complex crystals and quasicrystals with a double-well interaction potential. Phys. Rev. Lett. 98, 225505 (2007)

    ADS  Article  Google Scholar 

  20. Lifshitz, R. & Petrich, D. M. Theoretical model for Faraday waves with multiple-frequency forcing. Phys. Rev. Lett. 79, 1261–1264 (1997)

    ADS  CAS  Article  Google Scholar 

  21. Henley, C. L. Cell geometry for cluster-based quasicrystal model. Phys. Rev. B 43, 993–1020 (1991)

    ADS  CAS  Article  Google Scholar 

  22. Alder, B. J. & Wainwright, T. E. Phase transition for a hard-sphere system. J. Chem. Phys. 27, 1208–1209 (1957)

    ADS  CAS  Article  Google Scholar 

  23. Young, D. A. & Alder, B. J. Melting curve extrema from a repulsive “step” potential. Phys. Rev. Lett. 38, 1213–1216 (1977)

    ADS  CAS  Article  Google Scholar 

  24. Malescio, G. & Pellicane, G. Stripe phases from isotropic repulsive interactions. Nature Mater. 2, 97–100 (2003)

    ADS  CAS  Article  Google Scholar 

  25. Phillips, C. L. & Voth, G. A. Discovering crystals using shape matching and machine learning. Soft Matter 9, 8552–8568 (2013)

    ADS  CAS  Article  Google Scholar 

  26. Oxborrow, M. & Henley, C. L. Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals. Phys. Rev. B 48, 6966–6998 (1993)

    ADS  CAS  Article  Google Scholar 

  27. Kawamura, H. Entropy of the random triangle-square tiling. Physica A 177, 73–78 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  28. Lançon, F., Billard, L. & Chaudhari, P. Thermodynamical properties of a two-dimensional quasi-crystal from molecular dynamics calculations. Europhys. Lett. 2, 625–629 (1986)

    ADS  Article  Google Scholar 

  29. Polik, W. F. & Burchard, W. Static light scattering from aqueous poly(ethylene oxide) solutions in the temperature range 20–90°C. Macromolecules 16, 978–982 (1983)

    ADS  CAS  Article  Google Scholar 

  30. Motornov, M., Roiter, Y., Tokarev, I. & Minko, S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog. Polym. Sci. 35, 174–211 (2010)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Dolinšek, M. Engel, S. Förster, N. Fujita, M. A. Glaser, C. L. Henley, G. Kahl, R. D. Kamien, Y. Kimura, R. Lifshitz, C. N. Likos, T. C. Lubensky, Y. Sakamoto, M. Schmiedeberg, A. Šiber and A. Takano for discussions. This work was supported by the Japan Society for the Promotion of Science through Grant-in-Aid for Scientific Research (C) (grant number 22540375), by the Slovenian Research Agency (grant number P1-0055) and by the Marie-Curie Initial Training Network COMPLOIDS under FP7-PEOPLE-ITN-2008 (grant number 234810).

Author information

Authors and Affiliations

Authors

Contributions

T.D. and P.Z. conceived the project, T.D. and T.O. performed simulations, and P.Z. proposed the tiling theory. T.D. and P.Z. wrote the manuscript.

Corresponding author

Correspondence to T. Dotera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, comprising Supplementary Text and Data 1-3, Supplementary Tables 1-3, Supplementary Figures 1-36 and additional references. (PDF 6343 kb)

Hexagonal-dodecagonal-decaoctatic transition

This video shows a 31-frame sequence of snapshots and diffraction patterns illustrating the transition from hexagonal crystal to HD12 dodecagonal phase and then to HD18 decaoctatic phase in hard-core/square-shoulder disks induced by cooling accompanied by a moderate 10% decrease of shoulder width. (MOV 11655 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dotera, T., Oshiro, T. & Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 506, 208–211 (2014). https://doi.org/10.1038/nature12938

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12938

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing