Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Site- and energy-selective slow-electron production through intermolecular Coulombic decay

Subjects

Abstract

Irradiation of matter with light tends to electronically excite atoms and molecules, with subsequent relaxation processes determining where the photon energy is ultimately deposited and electrons and ions produced. In weakly bound systems, intermolecular Coulombic decay1 (ICD) enables very efficient relaxation of electronic excitation through transfer of the excess energy to neighbouring atoms or molecules that then lose an electron and become ionized2,3,4,5,6,7,8,9. Here we propose that the emission site and energy of the electrons released during this process can be controlled by coupling the ICD to a resonant core excitation. We illustrate this concept with ab initio many-body calculations on the argon–krypton model system, where resonant photoabsorption produces an initial or ‘parent’ excitation of the argon atom, which then triggers a resonant-Auger-ICD cascade that ends with the emission of a slow electron from the krypton atom. Our calculations show that the energy of the emitted electrons depends sensitively on the initial excited state of the argon atom. The incident energy can thus be adjusted both to produce the initial excitation in a chosen atom and to realize an excitation that will result in the emission of ICD electrons with desired energies. These properties of the decay cascade might have consequences for fundamental and applied radiation biology and could be of interest in the development of new spectroscopic techniques.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic illustration of the RA–ICD cascade.
Figure 2: Spectra of the ICD electrons emitted in the RA–ICD cascades in ArKr.

References

  1. 1

    Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778–4781 (1997)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nature Phys. 6, 139–142 (2010)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Mucke, M. et al. A hitherto unrecognized source of low-energy electrons in water. Nature Phys. 6, 143–146 (2010)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Grieves, G. A. & Orlando, T. M. Intermolecular Coulomb decay at weakly coupled heterogeneous interfaces. Phys. Rev. Lett. 107, 016104 (2011)

    ADS  Article  Google Scholar 

  5. 5

    Schwartz, C. P., Fatehi, S., Saykally, R. J. & Prendergast, D. Importance of electronic relaxation for inter-Coulombic decay in aqueous systems. Phys. Rev. Lett. 105, 198102 (2010)

    ADS  Article  Google Scholar 

  6. 6

    Stoychev, S. D., Kuleff, A. I. & Cederbaum, L. S. Intermolecular Coulombic decay in small biochemically relevant hydrogen-bonded systems. J. Am. Chem. Soc. 133, 6817–6824 (2011)

    CAS  Article  Google Scholar 

  7. 7

    Hergenhahn, U. Interatomic and intermolecular Coulombic decay: the early years. J. Electron Spectrosc. Relat. Phenom. 184, 78–90 (2011)

    CAS  Article  Google Scholar 

  8. 8

    Sisourat, N. et al. Ultralong-range energy transfer by interatomic Coulombic decay in an extreme quantum system. Nature Phys. 6, 508–511 (2010)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Havermeier, T. et al. Interatomic Coulombic decay following photoionization of the helium dimer: observation of vibrational structure. Phys. Rev. Lett. 104, 133401 (2010)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Kim, H. K. et al. Enhanced production of low energy electrons by alpha particle impact. Proc. Natl Acad. Sci. USA 108, 11821–11824 (2011)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Santra, R. & Cederbaum, L. S. Coulombic energy transfer and triple ionization in clusters. Phys. Rev. Lett. 90, 153401 (2003)

    ADS  Article  Google Scholar 

  12. 12

    Morishita, Y. et al. Experimental evidence of interatomic Coulombic decay from the Auger final states in argon dimers. Phys. Rev. Lett. 96, 243402 (2006)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Yamazaki, M. et al. Decay channel dependence of the photoelectron angular distributions in core-level ionization of Ne dimers. Phys. Rev. Lett. 101, 043004 (2008)

    ADS  Article  Google Scholar 

  14. 14

    Ueda, K. Core excitation and de-excitation spectroscopies of free atoms and molecules. J. Phys. Soc. Jpn 75, 032001 (2006)

    ADS  Article  Google Scholar 

  15. 15

    Feyer, V. et al. Core level study of alanine and threonine. J. Phys. Chem. A 112, 7806–7815 (2008)

    CAS  Article  Google Scholar 

  16. 16

    Hergenhahn, U. et al. The resonant Auger spectra of formic acid, acetaldehyde, acetic acid and methyl formate. Chem. Phys. 289, 57–67 (2003)

    CAS  Article  Google Scholar 

  17. 17

    de Gouw, J. A., van Eck, J., Peters, A. C., van der Weg, J. & Heideman, H. G. M. Resonant Auger spectra of the 2p−1nl states of argon. J. Phys. B 28, 2127–2141 (1995)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Fuggle, J. C. & Alvarado, S. F. Core-level lifetimes as determined by X-ray photoelectron spectroscopy measurements. Phys. Rev. A 22, 1615–1624 (1980)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Gorczyca, T. W. & Robicheaux, F. Auger decay of the photoexcited 2p−1nl Rydberg series in argon. Phys. Rev. A 60, 1216–1225 (1999)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Trinter, F. et al. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature http://dx.doi.org/10.1038/nature12927 (this issue)

  21. 21

    Kay, A. et al. Multi-atom resonant photoemission: a method for determining near-neighbor atomic identities and bonding. Science 281, 679–683 (1998)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Carravetta, V. & Ågren, H. An ab initio method for computing multi-atom resonant photoemission. Chem. Phys. Lett. 354, 100–108 (2002)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Pomplun, E. A new DNA target model for track structure calculations and its first application to I-125 Auger electrons. Int. J. Radiat. Biol. 59, 625–642 (1991)

    CAS  Article  Google Scholar 

  24. 24

    von Sonntag, C. Free-Radical-Induced DNA Damage and Its Repair (Springer, 2006)

    Book  Google Scholar 

  25. 25

    Adelstein, J. S., Kassis, A. I., Bodei, L. & Mariani, G. Radiotoxicity of iodine-125 and other Auger-electron-emitting radionuclides: background to therapy. Cancer Biother. Radiopharm. 18, 301–316 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Fairchild, R. G., Brill, A. B. & Ettinger, K. V. Radiation enhancement with iodinated deoxyuridine. Invest. Radiol. 17, 407–416 (1982)

    CAS  Article  Google Scholar 

  27. 27

    Aziz, E. F., Ottosson, N., Faubel, M., Hertel, I. V. & Winter, B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 455, 89–91 (2008)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time-scale for aqueous ions probed by the core-hole clock. J. Am. Chem. Soc. 133, 13430–13436 (2011)

    CAS  Article  Google Scholar 

  29. 29

    Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M. A. & Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287, 1658–1660 (2000)

    ADS  Article  Google Scholar 

  30. 30

    Martin, F. et al. DNA strand breaks induced by 0–4 eV electrons: the role of shape resonances. Phys. Rev. Lett. 93, 068101 (2004)

    ADS  Article  Google Scholar 

  31. 31

    Hausamann, D. & Morgner, H. The heteronuclear rare gas ions. A simple model for the determination of the potential curves. Mol. Phys. 54, 1085–1099 (1985)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Stoychev, S. D., Kuleff, A. I., Tarantelli, F. & Cederbaum, L. S. On the interatomic electronic processes following Auger decay in neon dimer. J. Chem. Phys. 129, 074307 (2008)

    ADS  Article  Google Scholar 

  33. 33

    Demekhin, Ph. V. et al. Interatomic Coulombic decay in NeAr following K-LL Auger transition in the Ne atom. J. Chem. Phys. 131, 104303 (2009)

    ADS  Article  Google Scholar 

  34. 34

    National Institute of Standards and Technology. NIST Atomic Spectra Databasehttp://physics.nist.gov/asd (2012)

  35. 35

    Averbukh, V. & Cederbaum, L. S. Ab initio calculation of interatomic decay rates by a combination of the Fano ansatz, Green’s-function methods, and the Stieltjes imaging technique. J. Chem. Phys. 123, 204107 (2005)

    ADS  Article  Google Scholar 

  36. 36

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Schirmer, J., Trofimov, A. B. & Stelter, G. A non-Dyson third-order approximation scheme for the electron propagator. J. Chem. Phys. 109, 4734–4744 (1998)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Hasi, A. U. in Electron-Molecule and Photon-Molecule Collisions (eds Rescigno, T., McKoy, V. & Schneider, B. ) 281–298 (Plenum, 1979)

    Google Scholar 

  39. 39

    Peterson, K. A., Figgen, D., Goll, E., Stoll, H. & Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J. Chem. Phys. 119, 11113–11123 (2003)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Woon, D. E. & Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Wilson, A. K., Woon, D. E., Peterson, K. A. & Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J. Chem. Phys. 110, 7667–7676 (1999)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Santra, R., Zobeley, J. & Cederbaum, L. S. Electronic decay of valence holes in clusters and condensed matter. Phys. Rev. B 64, 245104 (2001)

    ADS  Article  Google Scholar 

  43. 43

    Öhrwall, G. et al. Femtosecond interatomic Coulombic decay in free neon clusters: large lifetime differences between surface and bulk. Phys. Rev. Lett. 93, 173401 (2004)

    ADS  Article  Google Scholar 

  44. 44

    Müller, I. B. & Cederbaum, L. S. Ionization and double ionization of small water clusters. J. Chem. Phys. 125, 204305 (2006)

    ADS  Article  Google Scholar 

  45. 45

    Stoychev, S. D., Kuleff, A. I. & Cederbaum, L. S. On the intermolecular Coulombic decay of singly and doubly ionized states of water dimer. J. Chem. Phys. 133, 154307 (2010)

    ADS  Article  Google Scholar 

  46. 46

    Ottosson, N., Öhrwall, G. & Björneholm, O. Ultrafast charge delocalization dynamics in aqueous electrolytes: new insights from Auger electron spectroscopy. Chem. Phys. Lett. 543, 1–11 (2012)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Öhrwall, G. et al. Charge dependence of solvent-mediated intermolecular Coster-Kronig decay dynamics of aqueous ions. J. Phys. Chem. B 114, 17057–17061 (2010)

    Article  Google Scholar 

  48. 48

    Huels, M. A., Boudaïffa, B., Cloutier, P., Hunting, D. & Sanche, L. Single, double, and multiple double strand breaks induced in DNA by 3-100 eV electrons. J. Am. Chem. Soc. 125, 4467–4477 (2003)

    CAS  Article  Google Scholar 

  49. 49

    Milne-Brownlie, D. S. et al. Dynamics in electron-impact ionization of H2O. Phys. Rev. A 69, 032701 (2004)

    ADS  Article  Google Scholar 

  50. 50

    McCarthy, I. E. & Weigold, E. Electron momentum spectroscopy of atoms and molecules. Rep. Prog. Phys. 54, 789–879 (1991)

    ADS  CAS  Article  Google Scholar 

  51. 51

    Surdutovich, E. & Solov’yov, A. V. Multiscale physics of ion-beam cancer therapy. J. Phys. Conf. Ser. 373, 012001 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Advanced Investigator Grant no. 227597. P.K. acknowledges the support from the Czech Science Foundation (grant no. P208/12/0521).

Author information

Affiliations

Authors

Contributions

K.G., A.I.K. and L.S.C. had the idea for the cascade mechanism and its potential consequences. P.K. computed the lifetimes, and K.G. and A.I.K. evaluated the electronic spectra. K.G., A.I.K. and L.S.C. wrote the paper.

Corresponding authors

Correspondence to Kirill Gokhberg or Alexander I. Kuleff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Model potential energy curves of the initial and final ICD states of ArKr produced on excitation at 246.51 eV.

The horizontal lines indicate the potential energy curves of the excited valence-ionized states produced through the resonant Auger decay of the parent state following Ar() core excitation at 246.51 eV. The steep curves indicate the potential energy of the two-site doubly ionized final states obtained after ICD. The relative populations of the final resonant Auger states are given in per cent. Only states acquiring more than 5% of the total population are depicted. The equilibrium distance of the neutral ArKr (Req = 3.88 Å) is shown as a vertical dotted line.

Extended Data Figure 2 Model potential energy curves of the initial and final ICD states of ArKr produced on excitation at 246.93 eV.

The horizontal lines indicate the potential energy curves of the excited valence-ionized states produced through the resonant Auger decay of the parent state following Ar() core excitation at 246.93 eV. The steep curves indicate the potential energy of the two-site doubly ionized final states obtained after ICD. The relative populations of the final resonant Auger states are given in per cent. Only states acquiring more than 5% of the total population are depicted. The equilibrium distance of the neutral ArKr (Req = 3.88 Å) is shown as a vertical dotted line.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gokhberg, K., Kolorenč, P., Kuleff, A. et al. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature 505, 661–663 (2014). https://doi.org/10.1038/nature12936

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing