Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers

Abstract

In 1997, it was predicted1 that an electronically excited atom or molecule placed in a loosely bound chemical system (such as a hydrogen-bonded or van-der-Waals-bonded cluster) could efficiently decay by transferring its excess energy to a neighbouring species that would then emit a low-energy electron. This intermolecular Coulombic decay (ICD) process has since been shown to be a common phenomenon2,3,4,5,6,7,8,9,10,11,12, raising questions about its role in DNA damage induced by ionizing radiation, in which low-energy electrons are known to play an important part13,14. It was recently suggested15 that ICD can be triggered efficiently and site-selectively by resonantly core-exciting a target atom, which then transforms through Auger decay into an ionic species with sufficiently high excitation energy to permit ICD to occur. Here we show experimentally that resonant Auger decay can indeed trigger ICD in dimers of both molecular nitrogen and carbon monoxide. By using ion and electron momentum spectroscopy to measure simultaneously the charged species created in the resonant-Auger-driven ICD cascade, we find that ICD occurs in less time than the 20 femtoseconds it would take for individual molecules to undergo dissociation. Our experimental confirmation of this process and its efficiency may trigger renewed efforts to develop resonant X-ray excitation schemes16,17 for more localized and targeted cancer radiation therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall decay cascade mechanism.
Figure 2: Experimental results.

Similar content being viewed by others

References

  1. Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778–4781 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nature Phys. 6, 139–142 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Mucke, M. et al. A hitherto unrecognized source of low-energy electrons in water. Nature Phys. 6, 143–146 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Kim, H.-K. et al. Enhanced production of low energy electrons by alpha particle impact. Proc. Natl Acad. Sci. USA 108, 11821–11824 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barth, S. et al. Observation of resonant interatomic Coulombic decay in Ne clusters. J. Chem. Phys. 122, 241102 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Aoto, T. et al. Properties of resonant interatomic Coulombic decay in Ne dimers. Phys. Rev. Lett. 97, 243401 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Jahnke, T. et al. Experimental separation of virtual photon exchange and electron transfer in interatomic Coulombic decay of neon dimers. Phys. Rev. Lett. 99, 153401 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Ueda, K. et al. Interatomic Coulombic decay following the Auger decay: experimental evidence in rare-gas dimers. J. Electron Spectrosc. Relat. Phenom. 166–167, 3–10 (2008)

    Article  Google Scholar 

  9. Grieves, G. A. & Orlando, T. M. Intermolecular Coulomb decay at weakly coupled heterogeneous interfaces. Phys. Rev. Lett. 107, 016104 (2011)

    Article  ADS  PubMed  Google Scholar 

  10. Marburger, S., Kugeler, O., Hergenhahn, U. & Möller, T. Experimental evidence for interatomic Coulombic decay in Ne clusters. Phys. Rev. Lett. 90, 203401 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Jahnke, T. et al. Experimental observation of interatomic Coulombic decay in neon dimers. Phys. Rev. Lett. 93, 163401 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Öhrwall, G. et al. Femtosecond interatomic Coulombic decay in free neon clusters: large lifetime differences between surface and bulk. Phys. Rev. Lett. 93, 173401 (2004)

    Article  ADS  PubMed  Google Scholar 

  13. Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M. A. & Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287, 1658–1660 (2000)

    Article  ADS  PubMed  Google Scholar 

  14. Hanel, G. et al. Electron attachment to uracil: effective destruction at subexcitation energies. Phys. Rev. Lett. 90, 188104 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Gokhberg, K., Kolorenč, P., Kuleff, A. I. & Cederbaum, L. S. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature http://dx.doi.org/10.1038/nature12936 (this issue)

  16. Pradhan, A. K. et al. Resonant X-ray enhancement of the Auger effect in high-Z atoms, molecules, and nanoparticles: potential biomedical applications. J. Phys. Chem. A 113, 12356–12363 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. Howell, R. W. Auger processes in the 21st century. Int. J. Radiat. Biol. 84, 959–975 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Botting, S. K. & Lucchese, R. R. Auger decay of the C 1s -> 2π* excitation of CO. Phys. Rev. A 56, 3666–3674 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Aquilanti, V., Bartolomei, M., Cappelletti, D., Carmona-Novillo, E. & Pirani, F. The N2–N2 system: an experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer. J. Chem. Phys. 117, 615 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Havenith, M., Petri, M., Lubina, C., Hilpert, G. & Urban, W. J. IR spectroscopy of (CO)2 using concentration-frequency double modulation in a supersonic jet expansion. J. Mol. Spectrosc. 167, 248–261 (1994)

    Article  ADS  CAS  Google Scholar 

  21. Meredith, A. W. & Stone, A. J. An ab initio and diffusion Monte Carlo study of the potential energy surface of the CO dimers. J. Phys. Chem. A 102, 434–445 (1998)

    Article  CAS  Google Scholar 

  22. Havermeier, T. et al. Single photon double ionization of the helium dimer. Phys. Rev. Lett. 104, 153401 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Baltzer, P. et al. Inner-valence states of CO+ between 22 eV and 46 eV studied by high resolution photoelectron spectroscopy and ab initio CI calculations. J. Phys. At. Mol. Opt. Phys. 27, 4915 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Kimura, M. et al. Efficient site-specific low-energy electron production via interatomic Coulombic decay following resonant Auger decay in argon dimers. Phys. Rev. A 87, 043414 (2013)

    Article  ADS  Google Scholar 

  25. O’Keeffe, P. et al. The role of the partner atom and resonant excitation energy in interatomic Coulombic decay in rare gas dimers. J. Phys. Chem. Lett. 4, 1797–1801 (2013)

    Article  PubMed  Google Scholar 

  26. Kimura, K. et al. Controlling low-energy electron emission via resonant-auger-induced interatomic Coulombic decay. J. Phys. Chem. Lett. 4, 1838–1842 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. Dörner, R. et al. Cold target ion momentum spectrocopy: a ‘momentum microscope’ to view atomic collisions dynamics. Phys. Rep. 330, 95–192 (2000)

    Article  ADS  Google Scholar 

  28. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Schöffler, M. S. et al. Matter wave optics perspective at molecular photoionization: K-shell photoionization and Auger decay of N2 . New J. Phys. 13, 095013 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Deutscher Akademischer Austauschdienst. We thank the staff of the Advanced Light Source for excellent support during the beam time. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy at the Lawrence Berkeley National Laboratory under contract number DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231. We thank K. Gokhberg and L. Cederbaum for suggesting this experiment and for many discussions. M.S.S. thanks the Alexander von Humboldt foundation for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experiment. F.T. and T.J. performed the data analysis. All authors contributed to the manuscript.

Corresponding authors

Correspondence to F. Trinter or T. Jahnke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinter, F., Schöffler, M., Kim, HK. et al. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature 505, 664–666 (2014). https://doi.org/10.1038/nature12927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12927

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing