Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Be-type star with a black-hole companion

Subjects

Abstract

Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars1,2,3 (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions2,3,4. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification6 and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe ii profiles from the equatorial disk, and a refined Be classification (to that of a B1.5–B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10−7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical spectrum of MWC 656, obtained with the Mercator telescope.
Figure 2: Orbital evolution of the Fe ii 4,583 Å and He ii 4,686 Å emission lines.
Figure 3: The radial velocity curves of the Be star and its companion.

Similar content being viewed by others

References

  1. Raguzova, N. V. & Lipunov, V. M. The evolutionary evidence for Be/black hole binaries. Astron. Astrophys. 349, 505–510 (1999)

    ADS  CAS  Google Scholar 

  2. Zhang, F., Li, X.-D. & Wang, Z.-R. Where are the Be/black hole binaries? Astrophys. J. 603, 663–668 (2004)

    ADS  Google Scholar 

  3. Belczynski, K. & Ziolkówski, J. On the apparent lack of Be X-ray binaries with black holes. Astrophys. J. 707, 870–877 (2009)

    ADS  Google Scholar 

  4. Ziólkowski, J. & Belczynski, K. On the apparent lack of Be X-ray binaries with black holes in the Galaxy and in the Magellanic Clouds. IAU Symp. 275, 329–330 (2011)

    ADS  Google Scholar 

  5. Casares, J. et al. On the binary nature of the γ-ray sources AGL J2241+4454 ( = MWC 656) and HESS J0632+057 ( = MWC 148). Mon. Not. R. Astron. Soc. 421, 1103–1112 (2012)

    ADS  CAS  Google Scholar 

  6. Williams, S. J. et al. The Be star HD 215227: a candidate gamma-ray binary. Astrophys. J. 723, L93–L97 (2010)

    ADS  Google Scholar 

  7. Reig, P. Be/X-ray binaries. Astrophys. Space Sci. 332, 1–29 (2011)

    ADS  CAS  Google Scholar 

  8. Okazaki, A. T. & Negueruela, I. A natural explanation for periodic X-ray outbursts in Be/X-ray binaries. Astron. Astrophys. 377, 161–174 (2001)

    ADS  Google Scholar 

  9. Lucarelli, F. et al. AGILE detection of the new unidentified gamma-ray source AGL J2241+4454. Astron. Telegr. 2761, 1 (2010)

    ADS  Google Scholar 

  10. Ballereau, D., Chauville, J. & Zorec, J. High-resolution spectroscopy of southern and equatorial Be stars: flux excess at λ4471 Å. Astron. Astrophys. Suppl. Ser. 111, 423–455 (1995)

    ADS  CAS  Google Scholar 

  11. Smak, J. On the rotational velocities of gaseous rings in close binary systems. Acta Astronomica 19, 155–164 (1969)

    ADS  Google Scholar 

  12. Etzel, P. SBOP: Spectroscopic Binary Orbit Program (San Diego State Univ., 2004)

  13. Hanuschik, R. W. On the structure of Be star disks. Astron. Astrophys. 308, 170–179 (1996)

    ADS  CAS  Google Scholar 

  14. Arias, M. L. et al. Fe II emission lines in Be stars. I. Empirical diagnostic of physical conditions in the circumstellar discs. Astron. Astrophys. 460, 821–829 (2006)

    ADS  CAS  Google Scholar 

  15. Peters, G. J., Pewett, T. D., Gies, D. R., Touhami, Y. N. & Grundstrom, E. D. Far-ultraviolet detection of the suspected subdwarf companion to the Be star 59 Cygni. Astrophys. J. 765, 2–9 (2013)

    ADS  Google Scholar 

  16. Garcia, M. R. et al. New evidence for black hole event horizons from Chandra. Astrophys. J. 553, L47–L50 (2001)

    ADS  Google Scholar 

  17. Esin, A. A., McClintock, J. E. & Narayan, R. Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to Nova Muscae 1991. Astrophys. J. 489, 865–889 (1997)

    ADS  Google Scholar 

  18. Menou, K., Narayan, R. & Lasota, J.-P. A population of faint nontransient low-mass black hole binaries. Astrophys. J. 513, 811–826 (1999)

    ADS  Google Scholar 

  19. Coriat, M., Fender, R. P. & Dubus, G. Revisiting a fundamental test of the disc instability model for X-ray binaries. Mon. Not. R. Astron. Soc. 424, 1991–2001 (2012)

    ADS  Google Scholar 

  20. Linden, T., Valsecchi, F. & Kalogera, V. On the rarity of X-ray binaries with naked helium donors. Astrophys. J. 748, 114–121 (2012)

    ADS  Google Scholar 

  21. Schneider, D. P. & Young, P. The magnetic maw of 2A 0311-227. Astrophys. J. 238, 946–954 (1980)

    ADS  CAS  Google Scholar 

  22. Smak, J. On the S-wave components of the emission lines in the spectra of cataclysmic variables. Acta Astronomica 35, 351–367 (1985)

    ADS  Google Scholar 

  23. Shafter, A. W., Szkody, P. & Thorstensen, J. R. X-ray and optical observations of the ultrashort period dwarf nova SW Ursae Majoris — a likely new DQ Herculis star. Astrophys. J. 308, 765–780 (1986)

    ADS  CAS  Google Scholar 

  24. Paredes-Fortuny, X., Ribó, M., Fors, O. & Núñez, J. Optical photometric monitoring of gamma-ray binaries. Am. Inst. Phys. Conf. Ser. 1505, 390–393 (2012)

    ADS  Google Scholar 

  25. Gray, D. F. The Observations and Analysis of Stellar Photospheres (CUP 20, Wiley-Interscience, 1992)

    Google Scholar 

  26. Ryans, R. S. et al. Macroturbulent and rotational broadening in the spectra of B-type supergiants. Astron. Astrophys. 336, 577–586 (2002)

    CAS  Google Scholar 

  27. Abt, H. A., Levato, H. & Grosso, M. Rotational velocities of B stars. Astrophys. J. 573, 359–365 (2002)

    ADS  Google Scholar 

  28. Howarth, I. D. & Smith, K. C. Rotational mixing in early-type main-sequence stars. Mon. Not. R. Astron. Soc. 327, 353–368 (2001)

    ADS  Google Scholar 

  29. Walborn, N. R. et al. Further results from the Galactic O-star spectroscopic survey: rapidly rotating late ON giants. Astron. J. 142, 150–156 (2011)

    ADS  Google Scholar 

  30. Przybilla, N., Firnstein, M., Nieva, M. F., Meynet, G. & Maeder, A. Mixing of CNO-cycled matter in massive stars. Astron. Astrophys. 517, A38–A43 (2010)

    ADS  Google Scholar 

  31. Straižys, V. & Kuriliene, G. Fundamental stellar parameters derived from the evolutionary tracks. Astrophys. Space Sci. 80, 353–368 (1981)

    ADS  Google Scholar 

  32. Pavlovski, K. et al. Chemical evolution of high-mass stars in close binaries — II. The evolved component of the eclipsing binary V380 Cygni. Mon. Not. R. Astron. Soc. 400, 791–804 (2009)

    ADS  CAS  Google Scholar 

  33. Torres, G., Andersen, J. & Giménez, A. Accurate masses and radii of normal stars: modern results and applications. Astron. Astrophys. Rev. 18, 67–126 (2010)

    ADS  Google Scholar 

  34. Harmanec, P. Stellar masses and radii based on modern binary data. Bull. Astron. Inst. Czech. 39, 329–345 (1988)

    ADS  Google Scholar 

  35. Negueruela, I. et al. Astrophysical parameters of LS 2883 and implications for the PSR B1259-63 gamma-ray binary. Astrophys. J. 732, L11–L15 (2011)

    ADS  Google Scholar 

  36. Thompson, G. I. et al. Catalogue of Stellar Ultraviolet Fluxes. A Compilation of Absolute Stellar Fluxes Measured by the Sky Survey Telescope (S2/68) Aboard the ESRO Satellite TD-1 (Science Research Council, UK, 1978)

  37. Merrill, P. W. & Burwell, C. G. Supplement to the Mount Wilson catalogue and bibliography of stars of classes B and A whose spectra have bright hydrogen lines. Astrophys. J. 98, 153–184 (1943)

    ADS  CAS  Google Scholar 

  38. Hubeny, I. & Lanz, T. NLTE line blanketed model atmospheres of hot stars. I. Hybrid complete linearization/accelerated lambda iteration method. Astrophys. J. 439, 875–904 (1995)

    ADS  CAS  Google Scholar 

  39. Puls, J. et al. Atmospheric NLTE-models for the spectroscopic analysis of blue stars with winds. II. Line-blanketed models. Astron. Astrophys. 435, 669–698 (2005)

    ADS  CAS  Google Scholar 

  40. Nicolet, B. Catalogue of homogeneous data in the UBV photoelectric photometric system. Astron. Astrophys. Suppl. Ser. 34, 1–49 (1978)

    ADS  Google Scholar 

  41. Plotkin, R. M., Gallo, E. & Jonker, P. G. The X-ray spectral evolution of galactic black hole X-ray binaries toward quiescence. Astrophys. J. 773, 59–74 (2013)

    ADS  Google Scholar 

  42. Bohlin, R. C., Savage, B. D. & Drake, J. F. A survey of interstellar H I from L-alpha absorption measurements. II. Astrophys. J. 224, 132–134 (1978)

    ADS  CAS  Google Scholar 

  43. Mirabel, I. F. Gamma-ray binaries revealed. Science 335, 175–176 (2012)

    ADS  CAS  PubMed  Google Scholar 

  44. Albert, J. et al. Very high energy gamma-ray radiation from the stellar mass black hole binary Cygnus X-1. Astrophys. J. 665, L51–L54 (2007)

    ADS  CAS  Google Scholar 

  45. Sabatini, S. et al. Gamma-ray observations of Cygnus X-1 above 100 MeV in the hard and soft states. Astrophys. J. 766, 83–97 (2013)

    ADS  Google Scholar 

  46. Lipunov, V. M., Postnov, K. A., Prokhorov, M. E. & Osminkin, E. Yu. Binary radiopulsars with black holes. Astrophys. J. 423, L121–L124 (1994)

    ADS  Google Scholar 

  47. Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. New grids of stellar models from 0.8 to 120 solar masses at Z = 0.020 and Z = 0.001. Astron. Astrophys. 96 (suppl.). 269–331 (1992)

    ADS  Google Scholar 

  48. Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Astrophys. J. Suppl. Ser. 101, 181–235 (1995)

    ADS  CAS  Google Scholar 

  49. Boersma, J. Mathematical theory of the two-body problem with one of the masses decreasing with time. Bull. Astron. Inst. Neth. 15, 291–301 (1961)

    ADS  MathSciNet  Google Scholar 

  50. Narayan, R., Piran, T. & Shemi, A. Neutron star and black hole binaries in the Galaxy. Astrophys. J. 379, L17–L20 (1991)

    ADS  Google Scholar 

  51. Portegies Zwart, S. F. & Yungelson, L. R. Formation and evolution of binary neutron stars. Astron. Astrophys. 332, 173–188 (1998)

    ADS  CAS  Google Scholar 

  52. Belczynski, K., Kalogera, V. & Bulik, T. A Comprehensive study of binary compact objects as gravitational wave sources: evolutionary channels, rates, and physical properties. Astrophys. J. 572, 407–431 (2002)

    ADS  Google Scholar 

  53. Belczynski, K. et al. Cyg X-3: a galactic double black hole or black-hole-neutron-star progenitor. Astrophys. J. 764, 96–102 (2013)

    ADS  Google Scholar 

  54. Lesh, J. R. The kinematics of the Gould Belt: an expanding group? Astrophys. J. 17 (suppl.). 371–444 (1969)

    Google Scholar 

Download references

Acknowledgements

We thank T. Maccarone and P. Charles for comments on the paper. This work made use of the molly software package developed by T. R. Marsh. The Liverpool telescope and the Mercator telescope are operated on the island of La Palma by the Liverpool John Moores University and the University of Leuven/Observatory of Geneva, respectively, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The Liverpool telescope is funded by the UK Science and Technology Facilities Council. This research was supported by the Spanish MINECO and FEDER under grants AYA2010-18080, AYA2010-21782-C03-01, AYA2010-21967-C05-04/05, AYA2012-39364-C02-01/02, AYA2012-39612-C03-01, FPA2010-22056-C06-02 and SEV2011-0187-01; it was also funded by grant PID 2010119 from the Gobierno de Canarias. J.M.P. acknowledges financial support from ICREA Academia.

Author information

Authors and Affiliations

Authors

Contributions

J.C. performed the radial velocity analysis of the spectra and wrote the paper. I.N. obtained the Mercator spectrum and contributed to the interpretation of the data. I.R. computed the eccentric orbital fits to the radial velocity curves. M.R. calculated the distance and X-ray luminosity, and contributed to the interpretation of the data. J.M.P. also contributed to the interpretation of the data. A.H. computed the rotational broadening of the star and, together with I.N., performed the spectral calibration of the star. S.S-D. observed the standard stars and reduced the Mercator spectra. J.M.P. and M.R. assisted in writing the section on γ-ray binaries in Methods.

Corresponding author

Correspondence to J. Casares.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Time evolution of the He ii 4,686 Å emission line in MWC 656.

a, Radial velocities obtained from single Gaussian fits to the line profile. The best fitting sine wave, with a period of 59.5 days, is overplotted. Maximum velocity occurs at HJD 2455722.2 or photometric phase 0.06. b, Equivalent width (EW) as a function of time. We used the convention of positive equivalent widths for emission lines. Error bars, 1 s.d.

Extended Data Figure 2 Diagnostic diagram for the He ii 4,686 Å line in MWC 656.

It has been computed using the double-Gaussian technique with a Gaussian width equal to the instrumental resolution full-width at half-maximum, 55 km s−1. The vertical dotted line indicates the Gaussian separation for which the continuum noise starts to dominate. Error bars, 1 s.d. Panels display the evolution of the sine wave fitting parameters with Gaussian separation a. From top to bottom: the systemic velocity γ, the sine wave ϕ0 phase, the velocity semiamplitude K and the control parameter σ(K)/K.

Extended Data Figure 3 Classification spectrum of the Be star MWC 656.

From top to bottom, spectra of MWC 656 and the MK standards HD 214993 (B1.5 III) and HD 35468 (B2 III) (ref. 54). The standards have been artificially broadened by 330 km s−1 to mimic the rotational broadening of MWC 656.

Extended Data Table 1 Observing log of MWC 656
Extended Data Table 2 Orbital elements derived from radial velocities of the He ii 4,686 Å and Fe ii 4,583 Å lines

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casares, J., Negueruela, I., Ribó, M. et al. A Be-type star with a black-hole companion. Nature 505, 378–381 (2014). https://doi.org/10.1038/nature12916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12916

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing