Solar System evolution from compositional mapping of the asteroid belt


Advances in the discovery and characterization of asteroids over the past decade have revealed an unanticipated underlying structure that points to a dramatic early history of the inner Solar System. The asteroids in the main asteroid belt have been discovered to be more compositionally diverse with size and distance from the Sun than had previously been known. This implies substantial mixing through processes such as planetary migration and the subsequent dynamical processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The asteroid belt in context with the planets.
Figure 2: Cartoon of the effects of planetary migration on the asteroid belt.
Figure 3: The compositional mass distribution throughout the asteroid belt out to the Trojans.
Figure 4: The compositional mass distribution as a function of size throughout the main belt out to the Trojans.


  1. 1

    Wright, J. T. et al. The Exoplanet Orbit Database. Publ. Astron. Soc. Pacif. 123, 412–422 (2011)

  2. 2

    Gradie, J. & Tedesco, E. Compositional structure of the asteroid belt. Science 216, 1405–1407 (1982)This is a comprehensive view of the compositional trends of the asteroid belt that served for decades as the backbone for interpretations of the main belt.

  3. 3

    Fischer, H. Farbmessungen an kleinen planeten. Astron. Nachr. 272, 127–147 (1941)

  4. 4

    Wood, X. H. J. & Kuiper, G. P. Photometric studies of asteroids. Astrophys. J. 137, 1279–1285 (1963)

  5. 5

    Chapman, C. R., Johnson, T. V. & McCord, T. B. in Proc. IAU Colloq. 12 (ed. Gehrels, T. ) SP 267, 1–47 (National Aeronautics and Space Administration, 1971)

  6. 6

    Chapman, C. R., Morrison, D. & Zellner, B. Surface properties of asteroids—a synthesis of polarimetry, radiometry, and spectrophotometry. Icarus 25, 104–130 (1975)

  7. 7

    Zellner, B., Tholen, D. J. & Tedesco, E. F. The eight-color asteroid survey—results for 589 minor planets. Icarus 61, 355–416 (1985)

  8. 8

    Gradie, J. C., Chapman, C. R. & Tedesco, E. F. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S. ) 316–335 (Univ. Arizona Press, 1989)

  9. 9

    Bell, J. F., Davis, D. R., Hartmann, W. K. & Gaffey, M. J. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S. ) 921–945 (Univ. Arizona Press, 1989)

  10. 10

    Malhotra, R. The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993)

  11. 11

    Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)

  12. 12

    Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005)

  13. 13

    Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorny, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with self-gravitating planetesimal disk. Astron. J. 142, 152 (2011)

  14. 14

    Lazzaro, D. et al. Discovery of a basaltic asteroid in the outer main belt. Science 288, 2033–2035 (2000)

  15. 15

    Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A. & O’Brien, D. P. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006)

  16. 16

    Moskovitz, N. A. et al. The distribution of basaltic asteroids in the main belt. Icarus 198, 77–90 (2008)

  17. 17

    Ivezić, Z. et al. Solar System objects observed in the Sloan Digital Sky Survey commissioning data. Astron. J. 122, 2749–2784 (2001)This is the original article on asteroid measurements from the Sloan Digital Sky Survey (SDSS), which provided multi-filter photometry in the visible spectrum for over 100,000 asteroids.

  18. 18

    Mainzer, A. et al. Preliminary Results from NEOWISE: an enhancement to the Wide-field Infrared Survey Explorer for Solar System science. Astrophys. J. 731, 53 (2011)This is the original article on asteroid measurements from the Wide-field Infrared Survey Explorer (WISE), which provides diameters and albedos (surface brightness) for over 100,000 asteroids.

  19. 19

    DeMeo, F. E. & Carry, B. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226, 723–741 (2013)This work created a new framework to quantify the compositional makeup of the asteroid belt by looking at the distribution by mass rather than numbers.

  20. 20

    McCord, T. B. & Gaffey, M. J. Asteroids—surface composition from reflection spectroscopy. Science 186, 352–355 (1974)

  21. 21

    Grimm, R. E. & McSween, H. Y. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259, 653–655 (1993)

  22. 22

    Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011)

  23. 23

    Chapman, C. R. S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo's fly-bys of Gaspra and Ida. Meteorit. Planet. Sci. 31, 699–725 (1996)

  24. 24

    Sasaki, S. et al. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410, 555–557 (2001)

  25. 25

    Chapman, C. R. Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 32, 539–567 (2004)

  26. 26

    Brunetto, R. et al. Space weathering of silicates simulated by nanosecond pulse UV excimer laser. Icarus 180, 546–554 (2006)

  27. 27

    Binzel, R. P., Rivkin, A. S., Bus, S. J., Sunshine, J. M. & Burbine, T. H. MUSES-C target asteroid (25143) 1998 SF36: a reddened ordinary chondrite. Meteorit. Planet. Sci. 36, 1167–1172 (2001)

  28. 28

    Roig, F., Ribeiro, A. O. & Gil-Hutton, R. Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors. Astron. Astrophys. 483, 911–931 (2008)

  29. 29

    Carvano, J. M., Hasselmann, H., Lazzaro, D. & Mothé-Diniz, T. SDSS-based taxonomic classification and orbital distribution of main belt asteroids. Astron. Astrophys. 510, A43 (2010)

  30. 30

    Clark, B. E., Bell, J. F., Fanale, F. P. & O’Connor, D. J. Results of the seven-color asteroid survey: infrared spectral observations of 50-km size S-, K-, and M-type asteroids. Icarus 113, 387–402 (1995)

  31. 31

    Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: a feature-based taxonomy. Icarus 158, 146–177 (2002)

  32. 32

    Mothé-Diniz, T., Carvano, J. & Lazzaro, D. Distribution of taxonomic classes in the main belt of asteroids. Icarus 162, 10–21 (2003)This was the first extensive look at asteroid compositional distributions at smaller sizes; it indicates that the distribution differs from that in ref. 2.

  33. 33

    Lazzaro, D. et al. S3OS2: the visible spectroscopic survey of 820 asteroids. Icarus 172, 179–220 (2004)

  34. 34

    Hsieh, H. & Jewitt, D. A population of comets in the main asteroid belt. Science 312, 561–563 (2006)

  35. 35

    Campins, H. et al. Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010)

  36. 36

    Rivkin, A. S. & Emery, J. P. Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010)

  37. 37

    Licandro, J. et al. (65) Cybele: detection of small silicate grains, water-ice, and organics. Astron. Astrophys. 525, A34 (2011)

  38. 38

    Jewitt, D. The active asteroids. Astron. J. 143, 66 (2012)

  39. 39

    Carry, B. Density of asteroids. Planet. Space Sci. 73, 98–118 (2012)This work conducted a detailed analysis of 994 mass estimates and 1,500 volume determinations of 300 asteroids, demonstrating density trends per asteroid taxonomic class.

  40. 40

    Elkins-Tanton, L. T., Weiss, B. P. & Zuber, M. T. Chondrites as samples of differentiated planetesimals. Earth Planet. Sci. Lett. 305, 1–10 (2011)

  41. 41

    DeMeo, F. E., Binzel, R. P., Carry, B., Polishook, D. & Moskovitz, N. A. Unexpected D-type interlopers in the inner main belt. Icarus 229, 392–399 (2014)

  42. 42

    Levison, H. et al. Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009)

  43. 43

    Carvano, J. M., Lazzaro, D., Mothé-Diniz, T., Angeli, C. A. & Florczak, M. Spectroscopic survey of the Hungaria and Phocaea dynamical groups. Icarus 149, 173–189 (2001)

  44. 44

    Assandri, M. C. & Gil-Hutton, R. Surface composition of Hungaria asteroids from the analysis of the Sloan Digital Sky Survey colors. Astron. Astrophys. 488, 339–343 (2008)

  45. 45

    Warner, B., Harris, A. W., Vokrouhlicky, D., Nesvorny, D. & Bottke, W. F. Analysis of the Hungaria asteroid population. Icarus 204, 172–182 (2009)

  46. 46

    Meibom, A. &. Clark, B. E. Evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit. Planet. Sci. 34, 7–24 (1999)

  47. 47

    Ruzmaikina, T. V. & Safronov, V. S. &. Weidenschilling, S. J. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S. ) 681–700 (Univ. Arizona Press, 1989)

  48. 48

    Petit, J. M., Chambers, J., Franklin, F. & Nagasawa, M. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P. ) 711–723 (Univ. Arizona Press, 2002)

  49. 49

    O'Brien, D. P., Morbidelli, A. & Bottke, W. F. The primordial excitation and clearing of the asteroid belt—revisited. Icarus 191, 434–452 (2007)

  50. 50

    Gomes, R. The origin of the Kuiper Belt high-inclination population. Icarus 161, 404–418 (2003)

  51. 51

    Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

  52. 52

    Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F. & Gomes, R. Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007)

  53. 53

    Nesvorny, D., Vokrouhlický, D. & Morbidelli, A. Capture of irregular satellites during planetary encounters. Astron. J. 133, 1962 (2007)

  54. 54

    Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter's early gas-driven migration. Nature 475, 206–209 (2011)

  55. 55

    Chesley, S. R. et al. Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka. Science 302, 1739–1742 (2003)

  56. 56

    Bottke, W. F., Vokrouhlický, D., Rubincam, D. P. & Nesvorný, D. The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006)

  57. 57

    Gladman, B. J. et al. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997)

  58. 58

    Farinella, P., Vokrouhlicky, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998)

  59. 59

    Bottke, W. F., Vokrouhlicky, D., Broz, M., Nesvorny, D. & Morbidelli, A. Dynamical spreading of asteroid families by the Yarkovsky effect. Science 294, 1693–1696 (2001)

  60. 60

    Parker, A. et al. The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus 198, 138–155 (2008)

  61. 61

    Masiero, J. R. et al. Asteroid family identification using the hierarchical clustering method and WISE/NEOWISE physical properties. Astrophys. J. 770, 7 (2013)

  62. 62

    Wetherill, G. W. Steady state populations of Apollo-Amor objects. Icarus 37, 96–112 (1979)

  63. 63

    Wisdom, J. Chaotic behavior and the origin of the 3/1 Kirkwood gap. Icarus 56, 51–74 (1983)

  64. 64

    Nesvorný, D. et al. Fugitives from the Vesta family. Icarus 193, 85–95 (2008)

  65. 65

    Russell, C. T. et al. Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012)

  66. 66

    Thomas, P. C. et al. Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005)

  67. 67

    Carry, B. et al. Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astron. Astrophys. 478, 235–244 (2008)

  68. 68

    Castillo-Rogez, J. Ceres—neither a porous nor salty ball. Icarus 215, 599–602 (2011)

  69. 69

    Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993)

  70. 70

    Tholen, D. J. & Barucci, M. A. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S. ) 1139–1150 (Univ. Arizona Press, 1989)

  71. 71

    Lauretta, D. S. et al. OSIRIS-REx—exploration of asteroid (101955) 1999 RQ36. AGU Fall Meet. Abstr. P21E–01. (2011)

  72. 72

    Yano, H. et al. Hayabusa’s follow-on mission for surface and sub-surface sample return from a C-type NEO. In 38th COSPAR Scientific Assembly 635; (2010)

  73. 73

    Barucci, M. A. et al. MarcoPolo-R near earth asteroid sample return mission. Exp. Astron. 33, 645–684 (2012)

  74. 74

    Jenniskens, P. et al. The impact and recovery of 2008 TC3 . Nature 458, 485–488 (2009)

  75. 75

    Brown, P. et al. The fall of the Grimsby meteorite—I: Fireball dynamics and orbit from radar, video, and infrasound records. Meteorit. Planet. Sci. 46, 339–363 (2011)

  76. 76

    Mignard, F. et al. The Gaia Mission: expected applications to asteroid science. Earth Moon Planets 101, 97–125 (2007)

  77. 77

    Jones, R. L. et al. Solar System science with LSST. Earth Moon Planets 105, 101–105 (2009)

  78. 78

    Emery, J. P. & Brown, R. H. Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy. Icarus 164, 104–121 (2003)

  79. 79

    Emery, J. P. & Brown, R. H. The surface composition of Trojan asteroids: constraints set by scattering theory. Icarus 170, 131–152 (2004)

  80. 80

    Emery, J. P., Burr, D. M. & Cruikshank, D. P. Near-infrared spectroscopy of Trojan asteroids: evidence for two compositional groups. Astron. J. 141, 25 (2011)

  81. 81

    Yang, B. & Jewitt, D. Spectroscopic search for water ice on Jovian Trojan asteroids. Astron. J. 134, 223–228 (2007)

  82. 82

    Yang, B. & Jewitt, D. A near-infrared search for silicates in Jovian Trojan asteroids. Astron. J. 141, 95 (2011)

  83. 83

    Fornasier, S. et al. Visible spectroscopic and photometric survey of L5 Trojans: investigation of dynamical families. Icarus 172, 221–232 (2004)

  84. 84

    Fornasier, S. et al. Visible spectroscopic and photometric survey of Jupiter Trojans: final results on dynamical families. Icarus 190, 622–642 (2007)

  85. 85

    Gil-Hutton, R. & Brunini, A. Surface composition of Hilda asteroids from the analysis of the Sloan Digital Sky Survey colors. Icarus 193, 567–571 (2008)

  86. 86

    Grav, T. et al. WISE/NEOWISE observations of the Hilda population: preliminary results. Astrophys. J. 744, 197 (2012)

  87. 87

    Grav, T., Mainzer, A. K., Bauer, J. M., Masiero, J. R. & Nugent, C. R. WISE/NEOWISE observations of the Jovian Trojan population: taxonomy. Astrophys. J. 759, 49 (2012)

Download references


We are grateful to R. Binzel for help in shaping this review, and to K. Walsh, W. Bottke, N. Moskovitz, D. Polishook, T. Burbine, J. Wisdom and A. Morales for discussions. We thank C. Chapman for a review. We acknowledge support from the ESAC faculty for F.E.D.’s visit. This material is based upon work supported by the National Science Foundation under grant number 0907766 and by the National Aeronautics and Space Administration (NASA) under grant number NNX12AL26G. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or NASA. Support for this work was provided by NASA through the Hubble Fellowship grant HST-HF-51319.01-A, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. F.E.D. is a Hubble Fellow.

Author information

Both authors worked jointly on the scientific analysis that resulted in Figs 3 and 4. F.E.D. led the manuscript writing effort and B.C. created the figures.

Correspondence to F. E. DeMeo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

DeMeo, F., Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014) doi:10.1038/nature12908

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.