Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solar System evolution from compositional mapping of the asteroid belt

Abstract

Advances in the discovery and characterization of asteroids over the past decade have revealed an unanticipated underlying structure that points to a dramatic early history of the inner Solar System. The asteroids in the main asteroid belt have been discovered to be more compositionally diverse with size and distance from the Sun than had previously been known. This implies substantial mixing through processes such as planetary migration and the subsequent dynamical processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The asteroid belt in context with the planets.
Figure 2: Cartoon of the effects of planetary migration on the asteroid belt.
Figure 3: The compositional mass distribution throughout the asteroid belt out to the Trojans.
Figure 4: The compositional mass distribution as a function of size throughout the main belt out to the Trojans.

References

  1. 1

    Wright, J. T. et al. The Exoplanet Orbit Database. Publ. Astron. Soc. Pacif. 123, 412–422 (2011)

    ADS  Article  Google Scholar 

  2. 2

    Gradie, J. & Tedesco, E. Compositional structure of the asteroid belt. Science 216, 1405–1407 (1982)This is a comprehensive view of the compositional trends of the asteroid belt that served for decades as the backbone for interpretations of the main belt.

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Fischer, H. Farbmessungen an kleinen planeten. Astron. Nachr. 272, 127–147 (1941)

    ADS  Article  Google Scholar 

  4. 4

    Wood, X. H. J. & Kuiper, G. P. Photometric studies of asteroids. Astrophys. J. 137, 1279–1285 (1963)

    ADS  Article  Google Scholar 

  5. 5

    Chapman, C. R., Johnson, T. V. & McCord, T. B. in Proc. IAU Colloq. 12 (ed. Gehrels, T. ) SP 267, 1–47 (National Aeronautics and Space Administration, 1971)

    Google Scholar 

  6. 6

    Chapman, C. R., Morrison, D. & Zellner, B. Surface properties of asteroids—a synthesis of polarimetry, radiometry, and spectrophotometry. Icarus 25, 104–130 (1975)

    ADS  Article  Google Scholar 

  7. 7

    Zellner, B., Tholen, D. J. & Tedesco, E. F. The eight-color asteroid survey—results for 589 minor planets. Icarus 61, 355–416 (1985)

    ADS  Article  Google Scholar 

  8. 8

    Gradie, J. C., Chapman, C. R. & Tedesco, E. F. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S. ) 316–335 (Univ. Arizona Press, 1989)

    Google Scholar 

  9. 9

    Bell, J. F., Davis, D. R., Hartmann, W. K. & Gaffey, M. J. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S. ) 921–945 (Univ. Arizona Press, 1989)

    Google Scholar 

  10. 10

    Malhotra, R. The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993)

    ADS  Article  Google Scholar 

  11. 11

    Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorny, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with self-gravitating planetesimal disk. Astron. J. 142, 152 (2011)

    ADS  Article  Google Scholar 

  14. 14

    Lazzaro, D. et al. Discovery of a basaltic asteroid in the outer main belt. Science 288, 2033–2035 (2000)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A. & O’Brien, D. P. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Moskovitz, N. A. et al. The distribution of basaltic asteroids in the main belt. Icarus 198, 77–90 (2008)

    ADS  Article  Google Scholar 

  17. 17

    Ivezić, Z. et al. Solar System objects observed in the Sloan Digital Sky Survey commissioning data. Astron. J. 122, 2749–2784 (2001)This is the original article on asteroid measurements from the Sloan Digital Sky Survey (SDSS), which provided multi-filter photometry in the visible spectrum for over 100,000 asteroids.

    ADS  Article  Google Scholar 

  18. 18

    Mainzer, A. et al. Preliminary Results from NEOWISE: an enhancement to the Wide-field Infrared Survey Explorer for Solar System science. Astrophys. J. 731, 53 (2011)This is the original article on asteroid measurements from the Wide-field Infrared Survey Explorer (WISE), which provides diameters and albedos (surface brightness) for over 100,000 asteroids.

    ADS  Article  Google Scholar 

  19. 19

    DeMeo, F. E. & Carry, B. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226, 723–741 (2013)This work created a new framework to quantify the compositional makeup of the asteroid belt by looking at the distribution by mass rather than numbers.

    ADS  Article  Google Scholar 

  20. 20

    McCord, T. B. & Gaffey, M. J. Asteroids—surface composition from reflection spectroscopy. Science 186, 352–355 (1974)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Grimm, R. E. & McSween, H. Y. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259, 653–655 (1993)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Chapman, C. R. S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo's fly-bys of Gaspra and Ida. Meteorit. Planet. Sci. 31, 699–725 (1996)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Sasaki, S. et al. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410, 555–557 (2001)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Chapman, C. R. Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 32, 539–567 (2004)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Brunetto, R. et al. Space weathering of silicates simulated by nanosecond pulse UV excimer laser. Icarus 180, 546–554 (2006)

    ADS  Article  Google Scholar 

  27. 27

    Binzel, R. P., Rivkin, A. S., Bus, S. J., Sunshine, J. M. & Burbine, T. H. MUSES-C target asteroid (25143) 1998 SF36: a reddened ordinary chondrite. Meteorit. Planet. Sci. 36, 1167–1172 (2001)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Roig, F., Ribeiro, A. O. & Gil-Hutton, R. Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors. Astron. Astrophys. 483, 911–931 (2008)

    ADS  Article  Google Scholar 

  29. 29

    Carvano, J. M., Hasselmann, H., Lazzaro, D. & Mothé-Diniz, T. SDSS-based taxonomic classification and orbital distribution of main belt asteroids. Astron. Astrophys. 510, A43 (2010)

    ADS  Article  Google Scholar 

  30. 30

    Clark, B. E., Bell, J. F., Fanale, F. P. & O’Connor, D. J. Results of the seven-color asteroid survey: infrared spectral observations of 50-km size S-, K-, and M-type asteroids. Icarus 113, 387–402 (1995)

    ADS  Article  Google Scholar 

  31. 31

    Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: a feature-based taxonomy. Icarus 158, 146–177 (2002)

    ADS  Article  Google Scholar 

  32. 32

    Mothé-Diniz, T., Carvano, J. & Lazzaro, D. Distribution of taxonomic classes in the main belt of asteroids. Icarus 162, 10–21 (2003)This was the first extensive look at asteroid compositional distributions at smaller sizes; it indicates that the distribution differs from that in ref. 2.

    ADS  Article  Google Scholar 

  33. 33

    Lazzaro, D. et al. S3OS2: the visible spectroscopic survey of 820 asteroids. Icarus 172, 179–220 (2004)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Hsieh, H. & Jewitt, D. A population of comets in the main asteroid belt. Science 312, 561–563 (2006)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Campins, H. et al. Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Rivkin, A. S. & Emery, J. P. Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010)

    ADS  CAS  PubMed  Article  Google Scholar 

  37. 37

    Licandro, J. et al. (65) Cybele: detection of small silicate grains, water-ice, and organics. Astron. Astrophys. 525, A34 (2011)

    Article  CAS  Google Scholar 

  38. 38

    Jewitt, D. The active asteroids. Astron. J. 143, 66 (2012)

    ADS  Article  CAS  Google Scholar 

  39. 39

    Carry, B. Density of asteroids. Planet. Space Sci. 73, 98–118 (2012)This work conducted a detailed analysis of 994 mass estimates and 1,500 volume determinations of 300 asteroids, demonstrating density trends per asteroid taxonomic class.

    ADS  Article  Google Scholar 

  40. 40

    Elkins-Tanton, L. T., Weiss, B. P. & Zuber, M. T. Chondrites as samples of differentiated planetesimals. Earth Planet. Sci. Lett. 305, 1–10 (2011)

    ADS  CAS  Article  Google Scholar 

  41. 41

    DeMeo, F. E., Binzel, R. P., Carry, B., Polishook, D. & Moskovitz, N. A. Unexpected D-type interlopers in the inner main belt. Icarus 229, 392–399 (2014)

    ADS  Article  Google Scholar 

  42. 42

    Levison, H. et al. Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Carvano, J. M., Lazzaro, D., Mothé-Diniz, T., Angeli, C. A. & Florczak, M. Spectroscopic survey of the Hungaria and Phocaea dynamical groups. Icarus 149, 173–189 (2001)

    ADS  Article  Google Scholar 

  44. 44

    Assandri, M. C. & Gil-Hutton, R. Surface composition of Hungaria asteroids from the analysis of the Sloan Digital Sky Survey colors. Astron. Astrophys. 488, 339–343 (2008)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Warner, B., Harris, A. W., Vokrouhlicky, D., Nesvorny, D. & Bottke, W. F. Analysis of the Hungaria asteroid population. Icarus 204, 172–182 (2009)

    ADS  Article  Google Scholar 

  46. 46

    Meibom, A. &. Clark, B. E. Evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit. Planet. Sci. 34, 7–24 (1999)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Ruzmaikina, T. V. & Safronov, V. S. &. Weidenschilling, S. J. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S. ) 681–700 (Univ. Arizona Press, 1989)

  48. 48

    Petit, J. M., Chambers, J., Franklin, F. & Nagasawa, M. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P. ) 711–723 (Univ. Arizona Press, 2002)

    Book  Google Scholar 

  49. 49

    O'Brien, D. P., Morbidelli, A. & Bottke, W. F. The primordial excitation and clearing of the asteroid belt—revisited. Icarus 191, 434–452 (2007)

    ADS  Article  Google Scholar 

  50. 50

    Gomes, R. The origin of the Kuiper Belt high-inclination population. Icarus 161, 404–418 (2003)

    ADS  Article  Google Scholar 

  51. 51

    Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F. & Gomes, R. Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007)

    ADS  Article  Google Scholar 

  53. 53

    Nesvorny, D., Vokrouhlický, D. & Morbidelli, A. Capture of irregular satellites during planetary encounters. Astron. J. 133, 1962 (2007)

    ADS  Article  Google Scholar 

  54. 54

    Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter's early gas-driven migration. Nature 475, 206–209 (2011)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Chesley, S. R. et al. Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka. Science 302, 1739–1742 (2003)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Bottke, W. F., Vokrouhlický, D., Rubincam, D. P. & Nesvorný, D. The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006)

    ADS  CAS  Article  Google Scholar 

  57. 57

    Gladman, B. J. et al. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997)

    ADS  CAS  Article  Google Scholar 

  58. 58

    Farinella, P., Vokrouhlicky, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998)

    ADS  CAS  Article  Google Scholar 

  59. 59

    Bottke, W. F., Vokrouhlicky, D., Broz, M., Nesvorny, D. & Morbidelli, A. Dynamical spreading of asteroid families by the Yarkovsky effect. Science 294, 1693–1696 (2001)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Parker, A. et al. The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus 198, 138–155 (2008)

    ADS  Article  Google Scholar 

  61. 61

    Masiero, J. R. et al. Asteroid family identification using the hierarchical clustering method and WISE/NEOWISE physical properties. Astrophys. J. 770, 7 (2013)

    ADS  Article  Google Scholar 

  62. 62

    Wetherill, G. W. Steady state populations of Apollo-Amor objects. Icarus 37, 96–112 (1979)

    ADS  Article  Google Scholar 

  63. 63

    Wisdom, J. Chaotic behavior and the origin of the 3/1 Kirkwood gap. Icarus 56, 51–74 (1983)

    ADS  Article  Google Scholar 

  64. 64

    Nesvorný, D. et al. Fugitives from the Vesta family. Icarus 193, 85–95 (2008)

    ADS  Article  Google Scholar 

  65. 65

    Russell, C. T. et al. Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66

    Thomas, P. C. et al. Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Carry, B. et al. Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astron. Astrophys. 478, 235–244 (2008)

    ADS  CAS  Article  Google Scholar 

  68. 68

    Castillo-Rogez, J. Ceres—neither a porous nor salty ball. Icarus 215, 599–602 (2011)

    ADS  CAS  Article  Google Scholar 

  69. 69

    Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993)

    ADS  CAS  Article  Google Scholar 

  70. 70

    Tholen, D. J. & Barucci, M. A. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S. ) 1139–1150 (Univ. Arizona Press, 1989)

  71. 71

    Lauretta, D. S. et al. OSIRIS-REx—exploration of asteroid (101955) 1999 RQ36. AGU Fall Meet. Abstr. P21E–01. (2011)

  72. 72

    Yano, H. et al. Hayabusa’s follow-on mission for surface and sub-surface sample return from a C-type NEO. In 38th COSPAR Scientific Assembly 635; http://adsabs.harvard.edu/abs/2010cosp...38..635Y (2010)

  73. 73

    Barucci, M. A. et al. MarcoPolo-R near earth asteroid sample return mission. Exp. Astron. 33, 645–684 (2012)

    ADS  Article  Google Scholar 

  74. 74

    Jenniskens, P. et al. The impact and recovery of 2008 TC3 . Nature 458, 485–488 (2009)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Brown, P. et al. The fall of the Grimsby meteorite—I: Fireball dynamics and orbit from radar, video, and infrasound records. Meteorit. Planet. Sci. 46, 339–363 (2011)

    ADS  CAS  Article  Google Scholar 

  76. 76

    Mignard, F. et al. The Gaia Mission: expected applications to asteroid science. Earth Moon Planets 101, 97–125 (2007)

    ADS  Article  Google Scholar 

  77. 77

    Jones, R. L. et al. Solar System science with LSST. Earth Moon Planets 105, 101–105 (2009)

    ADS  CAS  Article  Google Scholar 

  78. 78

    Emery, J. P. & Brown, R. H. Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy. Icarus 164, 104–121 (2003)

    ADS  CAS  Article  Google Scholar 

  79. 79

    Emery, J. P. & Brown, R. H. The surface composition of Trojan asteroids: constraints set by scattering theory. Icarus 170, 131–152 (2004)

    ADS  CAS  Article  Google Scholar 

  80. 80

    Emery, J. P., Burr, D. M. & Cruikshank, D. P. Near-infrared spectroscopy of Trojan asteroids: evidence for two compositional groups. Astron. J. 141, 25 (2011)

    ADS  Article  Google Scholar 

  81. 81

    Yang, B. & Jewitt, D. Spectroscopic search for water ice on Jovian Trojan asteroids. Astron. J. 134, 223–228 (2007)

    ADS  CAS  Article  Google Scholar 

  82. 82

    Yang, B. & Jewitt, D. A near-infrared search for silicates in Jovian Trojan asteroids. Astron. J. 141, 95 (2011)

    ADS  Article  CAS  Google Scholar 

  83. 83

    Fornasier, S. et al. Visible spectroscopic and photometric survey of L5 Trojans: investigation of dynamical families. Icarus 172, 221–232 (2004)

    ADS  Article  Google Scholar 

  84. 84

    Fornasier, S. et al. Visible spectroscopic and photometric survey of Jupiter Trojans: final results on dynamical families. Icarus 190, 622–642 (2007)

    ADS  Article  Google Scholar 

  85. 85

    Gil-Hutton, R. & Brunini, A. Surface composition of Hilda asteroids from the analysis of the Sloan Digital Sky Survey colors. Icarus 193, 567–571 (2008)

    ADS  Article  Google Scholar 

  86. 86

    Grav, T. et al. WISE/NEOWISE observations of the Hilda population: preliminary results. Astrophys. J. 744, 197 (2012)

    ADS  Article  Google Scholar 

  87. 87

    Grav, T., Mainzer, A. K., Bauer, J. M., Masiero, J. R. & Nugent, C. R. WISE/NEOWISE observations of the Jovian Trojan population: taxonomy. Astrophys. J. 759, 49 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Binzel for help in shaping this review, and to K. Walsh, W. Bottke, N. Moskovitz, D. Polishook, T. Burbine, J. Wisdom and A. Morales for discussions. We thank C. Chapman for a review. We acknowledge support from the ESAC faculty for F.E.D.’s visit. This material is based upon work supported by the National Science Foundation under grant number 0907766 and by the National Aeronautics and Space Administration (NASA) under grant number NNX12AL26G. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or NASA. Support for this work was provided by NASA through the Hubble Fellowship grant HST-HF-51319.01-A, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. F.E.D. is a Hubble Fellow.

Author information

Affiliations

Authors

Contributions

Both authors worked jointly on the scientific analysis that resulted in Figs 3 and 4. F.E.D. led the manuscript writing effort and B.C. created the figures.

Corresponding author

Correspondence to F. E. DeMeo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

DeMeo, F., Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014). https://doi.org/10.1038/nature12908

Download citation

Further reading

  • Analytical protocols for Phobos regolith samples returned by the Martian Moons eXploration (MMX) mission

    • Wataru Fujiya
    • , Yoshihiro Furukawa
    • , Haruna Sugahara
    • , Mizuho Koike
    • , Ken-ichi Bajo
    • , Nancy L. Chabot
    • , Yayoi N. Miura
    • , Frederic Moynier
    • , Sara S. Russell
    • , Shogo Tachibana
    • , Yoshinori Takano
    • , Tomohiro Usui
    •  & Michael E. Zolensky

    Earth, Planets and Space (2021)

  • Formation of Venus, Earth and Mars: Constrained by Isotopes

    • Helmut Lammer
    • , Ramon Brasser
    • , Anders Johansen
    • , Manuel Scherf
    •  & Martin Leitzinger

    Space Science Reviews (2021)

  • All-sky visible and near infrared space astrometry

    • David Hobbs
    • , Anthony Brown
    • , Erik Høg
    • , Carme Jordi
    • , Daisuke Kawata
    • , Paolo Tanga
    • , Sergei Klioner
    • , Alessandro Sozzetti
    • , Łukasz Wyrzykowski
    • , Nicholas Walton
    • , Antonella Vallenari
    • , Valeri Makarov
    • , Jan Rybizki
    • , Fran Jiménez-Esteban
    • , José A. Caballero
    • , Paul J. McMillan
    • , Nathan Secrest
    • , Roger Mor
    • , Jeff J. Andrews
    • , Tomaž Zwitter
    • , Cristina Chiappini
    • , Johan P. U. Fynbo
    • , Yuan-Sen Ting
    • , Daniel Hestroffer
    • , Lennart Lindegren
    • , Barbara McArthur
    • , Naoteru Gouda
    • , Anna Moore
    • , Oscar A. Gonzalez
    •  & Mattia Vaccari

    Experimental Astronomy (2021)

  • Collisional history of Ryugu’s parent body from bright surface boulders

    • E. Tatsumi
    • , C. Sugimoto
    • , L. Riu
    • , S. Sugita
    • , T. Nakamura
    • , T. Hiroi
    • , T. Morota
    • , M. Popescu
    • , T. Michikami
    • , K. Kitazato
    • , M. Matsuoka
    • , S. Kameda
    • , R. Honda
    • , M. Yamada
    • , N. Sakatani
    • , T. Kouyama
    • , Y. Yokota
    • , C. Honda
    • , H. Suzuki
    • , Y. Cho
    • , K. Ogawa
    • , M. Hayakawa
    • , H. Sawada
    • , K. Yoshioka
    • , C. Pilorget
    • , M. Ishida
    • , D. Domingue
    • , N. Hirata
    • , S. Sasaki
    • , J. de León
    • , M. A. Barucci
    • , P. Michel
    • , M. Suemitsu
    • , T. Saiki
    • , S. Tanaka
    • , F. Terui
    • , S. Nakazawa
    • , S. Kikuchi
    • , T. Yamaguchi
    • , N. Ogawa
    • , G. Ono
    • , Y. Mimasu
    • , K. Yoshikawa
    • , T. Takahashi
    • , Y. Takei
    • , A. Fujii
    • , Y. Yamamoto
    • , T. Okada
    • , C. Hirose
    • , S. Hosoda
    • , O. Mori
    • , T. Shimada
    • , S. Soldini
    • , R. Tsukizaki
    • , T. Mizuno
    • , T. Iwata
    • , H. Yano
    • , M. Ozaki
    • , M. Abe
    • , M. Ohtake
    • , N. Namiki
    • , S. Tachibana
    • , M. Arakawa
    • , H. Ikeda
    • , M. Ishiguro
    • , K. Wada
    • , H. Yabuta
    • , H. Takeuchi
    • , Y. Shimaki
    • , K. Shirai
    • , N. Hirata
    • , Y. Iijima
    • , Y. Tsuda
    • , S. Watanabe
    •  & M. Yoshikawa

    Nature Astronomy (2021)

  • Spitzer’s Solar System studies of comets, centaurs and Kuiper belt objects

    • Carey Lisse
    • , James Bauer
    • , Dale Cruikshank
    • , Josh Emery
    • , Yanga Fernández
    • , Estela Fernández-Valenzuela
    • , Michael Kelley
    • , Adam McKay
    • , William Reach
    • , Yvonne Pendleton
    • , Noemi Pinilla-Alonso
    • , John Stansberry
    • , Mark Sykes
    • , David E. Trilling
    • , Diane Wooden
    • , David Harker
    • , Robert Gehrz
    •  & Charles Woodward

    Nature Astronomy (2020)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing