Abstract
We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
Accessions
Data deposits
All sequence data have been submitted to the European Nucleotide Archive (ENA) and are available under the following accessions: Altai Neanderthal: ERP002097, Mezmaiskaya Neanderthal: ERP002447. The data from the 25 present-day human genomes and 13 experimentally phased present-day genomes are available as a public dataset from http://aws.amazon.com/datasets/ and from http://cdna.eva.mpg.de/neandertal/altai/.
References
- 1.
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012)
- 2.
Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010)
- 3.
Mednikova, M. B. A proximal pedal phalanx of a paleolithic hominin from Denisova cave, Altai. Archaeol. Ethnol. Anthropol. Eurasia 39, 129–138 (2011)
- 4.
Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008)
- 5.
Briggs, A. W. et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325, 318–321 (2009)
- 6.
Golovanova, L. V., Hoffecker, J. F., Kharitonov, V. M. & Romanova, G. P. Mezmaiskaya cave: A Neanderthal occupation in the Northern Caucasus. Curr. Anthropol. 40, 77–86 (1999)
- 7.
Gansauge, M. T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nature Protocols 8, 737–748 (2013)
- 8.
Kircher, M. Analysis of high-throughput ancient DNA sequencing data. Methods Mol. Biol. 840, 197–228 (2012)
- 9.
Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007)
- 10.
Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010)
- 11.
Hofreiter, M., Jaenicke, V., Serre, D., von Haeseler, A. & Paabo, S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 29, 4793–4799 (2001)
- 12.
Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010)
- 13.
Skinner, A. R. et al. ESR dating at Mezmaiskaya Cave, Russia. Appl. Radiat. Isot. 62, 219–224 (2005)
- 14.
Kitzman, J. O. et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nature Biotechnol. 29, 59–63 (2011)
- 15.
Abecasis, G. R. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)
- 16.
Awadalla, P. et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 87, 316–324 (2010)
- 17.
Roach, J. C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010)
- 18.
Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012)
- 19.
Campbell, C. D. et al. Estimating the human mutation rate using autozygosity in a founder population. Nature Genet. 44, 1277–1281 (2012)
- 20.
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011)
- 21.
Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471–475 (2013)
- 22.
Kirin, M. et al. Genomic runs of homozygosity record population history and consanguinity. PLoS ONE 5, e13996 (2010)
- 23.
Leffler, E. M. et al. Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol. 10, e1001388 (2012)
- 24.
Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011)
- 25.
Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 18301–18306 (2011)
- 26.
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013)
- 27.
Wall, J. D. et al. Higher levels of Neanderthal ancestry in East Asians than in Europeans. Genetics 194, 199–209 (2013)
- 28.
Abi-Rached, L. et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334, 89–94 (2011)
- 29.
Waddell, P. J. & Tan, X. New g%AIC, g%AICc, g%BIC, and power divergence fit statistics expose mating between modern humans, Neanderthals and other archaics. Preprint at http://arxiv.org/abs/1212.6820 (2012)
- 30.
Wegmann, D., Leuenberger, C., Neuenschwander, S. & Excoffier, L. ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinformatics 11, 116 (2010)
- 31.
Kumar, R. A. et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17, 628–638 (2008)
- 32.
Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012)
- 33.
Fietz, S. A. & Huttner, W. B. Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr. Opin. Neurobiol. 21, 23–35 (2011)
- 34.
Kokovay, E. et al. VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression. Cell Stem Cell 11, 220–230 (2012)
- 35.
Wang, C., Liang, C. C., Bian, Z. C., Zhu, Y. & Guan, J. L. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nature Neurosci. 16, 532–542 (2013)
- 36.
Rios, D. et al. A database and API for variation, dense genotyping and resequencing data. BMC Bioinformatics 11, 238 (2010)
- 37.
Hublin, J. J. Out of Africa: modern human origins special feature: the origin of Neandertals. Proc. Natl Acad. Sci. USA 106, 16022–16027 (2009)
- 38.
Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8, e1002947 (2012)
- 39.
Yang, M. A., Malaspinas, A. S., Durand, E. Y. & Slatkin, M. Ancient structure in Africa unlikely to explain Neanderthal and non-African genetic similarity. Mol. Biol. Evol. 29, 2987–2995 (2012)
- 40.
Eriksson, A. & Manica, A. Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proc. Natl Acad. Sci. USA 109, 13956–13960 (2012)
- 41.
Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010)
- 42.
Gabunia, L. et al. Dmanisi and dispersal. Evol. Anthropol. 10, 158–170 (2001)
- 43.
Asfaw, B. et al. Remains of Homo erectus from Bouri, Middle Awash, Ethiopia. Nature 416, 317–320 (2002)
- 44.
Kircher, M., Stenzel, U. & Kelso, J. Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 10, R83 (2009)
- 45.
Langergraber, K. E. et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012)
- 46.
Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nature Rev. Genet. 13, 745–753 (2012)
Acknowledgements
We thank M. Hammer, C. Winkler and W. Klitz for sharing DNA samples; W. Huttner and his group, B. Peter, J. G. Schraiber and M. A. Yang for helpful discussions; and A. Lewis and R. Qiu for technical assistance. N.P. and D.R. are grateful for the chance to discuss these results with Peter Waddell who independently found evidence of a deeply diverged hominin admixing into the Denisova genome. D.R. and E.E.E. are Howard Hughes Medical Institute Investigators. D.R. and N.P. were supported by NSF grant number 1032255 and NIH grant GM100233; E.E.E. by NIH grant HG002385; J.S. by grant HG006283 from the National Genome Research Institute (NHGRI); S.S. by a post-doctoral fellowship from the Harvard University Science of the Human Past Program; F.J. and M.S. in part by a grant from the NIH (R01-GM40282); P.H.S. by an HHMI International Student Fellowship. We thank the team at the NIH Intramural Sequencing Center and Alice Young in particular, for generating some of the sequence reported here. This research was supported in part by the Paul G. Allen Family Foundation. Major funding support came from the Presidential Innovation Fund of the Max Planck Society.
Author information
Author notes
- Ines Hellmann
Present address: Ludwig-Maximilians-Universität München, Martinsried, 82152 Munich, Germany.
Affiliations
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Kay Prüfer
- , Susanna Sawyer
- , Anja Heinze
- , Gabriel Renaud
- , Cesare de Filippo
- , Michael Dannemann
- , Qiaomei Fu
- , Martin Kircher
- , Martin Kuhlwilm
- , Michael Lachmann
- , Matthias Meyer
- , Matthias Ongyerth
- , Michael Siebauer
- , Christoph Theunert
- , Janet Kelso
- & Svante Pääbo
Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
- Fernando Racimo
- , Flora Jay
- & Montgomery Slatkin
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Nick Patterson
- , Sriram Sankararaman
- , Heng Li
- , Swapan Mallick
- , Arti Tandon
- & David Reich
Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Sriram Sankararaman
- , Swapan Mallick
- , Arti Tandon
- , Priya Moorjani
- , Joseph Pickrell
- & David Reich
Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Peter H. Sudmant
- , Martin Kircher
- , Jacob O. Kitzman
- , Jay Shendure
- & Evan E. Eichler
Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Qiaomei Fu
Genome Technology Branch and NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- James C. Mullikin
Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
- Samuel H. Vohr
- & Richard E. Green
Max F. Perutz Laboratories, Mathematics and Bioscience Group, Campus Vienna Biocenter 5, Vienna 1030, Austria
- Ines Hellmann
Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Philip L. F. Johnson
Fondation Jean Dausset, Centre d'Étude du Polymorphisme Humain (CEPH), 75010 Paris, France
- Hélène Blanche
- & Howard Cann
Howard Hughes Medical Institute, Seattle, Washington 98195, USA
- Evan E. Eichler
Allen Institute for Brain Science, Seattle, Washington 98103, USA
- Ed S. Lein
- & Trygve E. Bakken
ANO Laboratory of Prehistory 14 Linia 3-11, St. Petersburg 1990 34, Russia
- Liubov V. Golovanova
- & Vladimir B. Doronichev
Palaeolithic Department, Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
- Michael V. Shunkov
- & Anatoli P. Derevianko
Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Bence Viola
Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- David Reich
Authors
Search for Kay Prüfer in:
Search for Fernando Racimo in:
Search for Nick Patterson in:
Search for Flora Jay in:
Search for Sriram Sankararaman in:
Search for Susanna Sawyer in:
Search for Anja Heinze in:
Search for Gabriel Renaud in:
Search for Peter H. Sudmant in:
Search for Cesare de Filippo in:
Search for Heng Li in:
Search for Swapan Mallick in:
Search for Michael Dannemann in:
Search for Qiaomei Fu in:
Search for Martin Kircher in:
Search for Martin Kuhlwilm in:
Search for Michael Lachmann in:
Search for Matthias Meyer in:
Search for Matthias Ongyerth in:
Search for Michael Siebauer in:
Search for Christoph Theunert in:
Search for Arti Tandon in:
Search for Priya Moorjani in:
Search for Joseph Pickrell in:
Search for James C. Mullikin in:
Search for Samuel H. Vohr in:
Search for Richard E. Green in:
Search for Ines Hellmann in:
Search for Philip L. F. Johnson in:
Search for Hélène Blanche in:
Search for Howard Cann in:
Search for Jacob O. Kitzman in:
Search for Jay Shendure in:
Search for Evan E. Eichler in:
Search for Ed S. Lein in:
Search for Trygve E. Bakken in:
Search for Liubov V. Golovanova in:
Search for Vladimir B. Doronichev in:
Search for Michael V. Shunkov in:
Search for Anatoli P. Derevianko in:
Search for Bence Viola in:
Search for Montgomery Slatkin in:
Search for David Reich in:
Search for Janet Kelso in:
Search for Svante Pääbo in:
Contributions
S.Saw., A.H. and Q.F. performed the experiments; K.P., F.R., N.P., F.J., S.San., S.Saw., A.H., G.R., P.H.S., C.d.F., M.D., Q.F., M.Ki., M.Ku., M.L., M.M., M.O., M.Si., C.T., H.L., S.M., A.T., P.M., J.P., J.C.M., S.H.V., R.E.G., I.H., P.L.F.J., J.O.K., J.S., E.E.E., E.S.L., T.E.B., M.Sl., D.R., J.K., and S.P. analysed genetic data; L.V.G., V.B.D., M.V.S., A.P.D. and B.V. analysed archaeological and anthropological data; H.B. and H.C. provided samples and reagents; K.P., J.K. and S.P. wrote and edited the manuscript with input from all authors.
Competing interests
The authors declare no competing financial interests.
Corresponding authors
Correspondence to Montgomery Slatkin or David Reich or Svante Pääbo.
Extended data
Extended data figures
Supplementary information
PDF files
- 1.
Supplementary Information
This file contains Supplementary Text, Tables and Figures – see contents page for details.
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
Analysis of the human Y-chromosome haplogroup Q characterizes ancient population movements in Eurasia and the Americas
BMC Biology (2019)
-
Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave
Nature (2019)
-
Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania
Nature Communications (2019)
-
Dating of hominin discoveries at Denisova
Nature (2019)
-
Timing of archaic hominin occupation of Denisova Cave in southern Siberia
Nature (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.