Abstract

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

European Nucleotide Archive

Data deposits

All sequence data have been submitted to the European Nucleotide Archive (ENA) and are available under the following accessions: Altai Neanderthal: ERP002097, Mezmaiskaya Neanderthal: ERP002447. The data from the 25 present-day human genomes and 13 experimentally phased present-day genomes are available as a public dataset from http://aws.amazon.com/datasets/ and from http://cdna.eva.mpg.de/neandertal/altai/.

References

  1. 1.

    et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012)

  2. 2.

    et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010)

  3. 3.

    A proximal pedal phalanx of a paleolithic hominin from Denisova cave, Altai. Archaeol. Ethnol. Anthropol. Eurasia 39, 129–138 (2011)

  4. 4.

    et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008)

  5. 5.

    et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325, 318–321 (2009)

  6. 6.

    , , & Mezmaiskaya cave: A Neanderthal occupation in the Northern Caucasus. Curr. Anthropol. 40, 77–86 (1999)

  7. 7.

    & Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nature Protocols 8, 737–748 (2013)

  8. 8.

    Analysis of high-throughput ancient DNA sequencing data. Methods Mol. Biol. 840, 197–228 (2012)

  9. 9.

    et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007)

  10. 10.

    et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010)

  11. 11.

    , , , & DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 29, 4793–4799 (2001)

  12. 12.

    et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010)

  13. 13.

    et al. ESR dating at Mezmaiskaya Cave, Russia. Appl. Radiat. Isot. 62, 219–224 (2005)

  14. 14.

    et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nature Biotechnol. 29, 59–63 (2011)

  15. 15.

    et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)

  16. 16.

    et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 87, 316–324 (2010)

  17. 17.

    et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010)

  18. 18.

    et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012)

  19. 19.

    et al. Estimating the human mutation rate using autozygosity in a founder population. Nature Genet. 44, 1277–1281 (2012)

  20. 20.

    & Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011)

  21. 21.

    et al. Great ape genetic diversity and population history. Nature 499, 471–475 (2013)

  22. 22.

    et al. Genomic runs of homozygosity record population history and consanguinity. PLoS ONE 5, e13996 (2010)

  23. 23.

    et al. Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol. 10, e1001388 (2012)

  24. 24.

    et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011)

  25. 25.

    & Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 18301–18306 (2011)

  26. 26.

    et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013)

  27. 27.

    et al. Higher levels of Neanderthal ancestry in East Asians than in Europeans. Genetics 194, 199–209 (2013)

  28. 28.

    et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334, 89–94 (2011)

  29. 29.

    & New g%AIC, g%AICc, g%BIC, and power divergence fit statistics expose mating between modern humans, Neanderthals and other archaics. Preprint at (2012)

  30. 30.

    , , & ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinformatics 11, 116 (2010)

  31. 31.

    et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17, 628–638 (2008)

  32. 32.

    et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012)

  33. 33.

    & Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr. Opin. Neurobiol. 21, 23–35 (2011)

  34. 34.

    et al. VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression. Cell Stem Cell 11, 220–230 (2012)

  35. 35.

    , , , & FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nature Neurosci. 16, 532–542 (2013)

  36. 36.

    et al. A database and API for variation, dense genotyping and resequencing data. BMC Bioinformatics 11, 238 (2010)

  37. 37.

    Out of Africa: modern human origins special feature: the origin of Neandertals. Proc. Natl Acad. Sci. USA 106, 16022–16027 (2009)

  38. 38.

    , , , & The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8, e1002947 (2012)

  39. 39.

    , , & Ancient structure in Africa unlikely to explain Neanderthal and non-African genetic similarity. Mol. Biol. Evol. 29, 2987–2995 (2012)

  40. 40.

    & Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proc. Natl Acad. Sci. USA 109, 13956–13960 (2012)

  41. 41.

    et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010)

  42. 42.

    et al. Dmanisi and dispersal. Evol. Anthropol. 10, 158–170 (2001)

  43. 43.

    et al. Remains of Homo erectus from Bouri, Middle Awash, Ethiopia. Nature 416, 317–320 (2002)

  44. 44.

    , & Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 10, R83 (2009)

  45. 45.

    et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012)

  46. 46.

    & Revising the human mutation rate: implications for understanding human evolution. Nature Rev. Genet. 13, 745–753 (2012)

Download references

Acknowledgements

We thank M. Hammer, C. Winkler and W. Klitz for sharing DNA samples; W. Huttner and his group, B. Peter, J. G. Schraiber and M. A. Yang for helpful discussions; and A. Lewis and R. Qiu for technical assistance. N.P. and D.R. are grateful for the chance to discuss these results with Peter Waddell who independently found evidence of a deeply diverged hominin admixing into the Denisova genome. D.R. and E.E.E. are Howard Hughes Medical Institute Investigators. D.R. and N.P. were supported by NSF grant number 1032255 and NIH grant GM100233; E.E.E. by NIH grant HG002385; J.S. by grant HG006283 from the National Genome Research Institute (NHGRI); S.S. by a post-doctoral fellowship from the Harvard University Science of the Human Past Program; F.J. and M.S. in part by a grant from the NIH (R01-GM40282); P.H.S. by an HHMI International Student Fellowship. We thank the team at the NIH Intramural Sequencing Center and Alice Young in particular, for generating some of the sequence reported here. This research was supported in part by the Paul G. Allen Family Foundation. Major funding support came from the Presidential Innovation Fund of the Max Planck Society.

Author information

Author notes

    • Ines Hellmann

    Present address: Ludwig-Maximilians-Universität München, Martinsried, 82152 Munich, Germany.

Affiliations

  1. Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany

    • Kay Prüfer
    • , Susanna Sawyer
    • , Anja Heinze
    • , Gabriel Renaud
    • , Cesare de Filippo
    • , Michael Dannemann
    • , Qiaomei Fu
    • , Martin Kircher
    • , Martin Kuhlwilm
    • , Michael Lachmann
    • , Matthias Meyer
    • , Matthias Ongyerth
    • , Michael Siebauer
    • , Christoph Theunert
    • , Janet Kelso
    •  & Svante Pääbo
  2. Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA

    • Fernando Racimo
    • , Flora Jay
    •  & Montgomery Slatkin
  3. Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA

    • Nick Patterson
    • , Sriram Sankararaman
    • , Heng Li
    • , Swapan Mallick
    • , Arti Tandon
    •  & David Reich
  4. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

    • Sriram Sankararaman
    • , Swapan Mallick
    • , Arti Tandon
    • , Priya Moorjani
    • , Joseph Pickrell
    •  & David Reich
  5. Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA

    • Peter H. Sudmant
    • , Martin Kircher
    • , Jacob O. Kitzman
    • , Jay Shendure
    •  & Evan E. Eichler
  6. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China

    • Qiaomei Fu
  7. Genome Technology Branch and NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA

    • James C. Mullikin
  8. Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA

    • Samuel H. Vohr
    •  & Richard E. Green
  9. Max F. Perutz Laboratories, Mathematics and Bioscience Group, Campus Vienna Biocenter 5, Vienna 1030, Austria

    • Ines Hellmann
  10. Department of Biology, Emory University, Atlanta, Georgia 30322, USA

    • Philip L. F. Johnson
  11. Fondation Jean Dausset, Centre d'Étude du Polymorphisme Humain (CEPH), 75010 Paris, France

    • Hélène Blanche
    •  & Howard Cann
  12. Howard Hughes Medical Institute, Seattle, Washington 98195, USA

    • Evan E. Eichler
  13. Allen Institute for Brain Science, Seattle, Washington 98103, USA

    • Ed S. Lein
    •  & Trygve E. Bakken
  14. ANO Laboratory of Prehistory 14 Linia 3-11, St. Petersburg 1990 34, Russia

    • Liubov V. Golovanova
    •  & Vladimir B. Doronichev
  15. Palaeolithic Department, Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia

    • Michael V. Shunkov
    •  & Anatoli P. Derevianko
  16. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany

    • Bence Viola
  17. Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA

    • David Reich

Authors

  1. Search for Kay Prüfer in:

  2. Search for Fernando Racimo in:

  3. Search for Nick Patterson in:

  4. Search for Flora Jay in:

  5. Search for Sriram Sankararaman in:

  6. Search for Susanna Sawyer in:

  7. Search for Anja Heinze in:

  8. Search for Gabriel Renaud in:

  9. Search for Peter H. Sudmant in:

  10. Search for Cesare de Filippo in:

  11. Search for Heng Li in:

  12. Search for Swapan Mallick in:

  13. Search for Michael Dannemann in:

  14. Search for Qiaomei Fu in:

  15. Search for Martin Kircher in:

  16. Search for Martin Kuhlwilm in:

  17. Search for Michael Lachmann in:

  18. Search for Matthias Meyer in:

  19. Search for Matthias Ongyerth in:

  20. Search for Michael Siebauer in:

  21. Search for Christoph Theunert in:

  22. Search for Arti Tandon in:

  23. Search for Priya Moorjani in:

  24. Search for Joseph Pickrell in:

  25. Search for James C. Mullikin in:

  26. Search for Samuel H. Vohr in:

  27. Search for Richard E. Green in:

  28. Search for Ines Hellmann in:

  29. Search for Philip L. F. Johnson in:

  30. Search for Hélène Blanche in:

  31. Search for Howard Cann in:

  32. Search for Jacob O. Kitzman in:

  33. Search for Jay Shendure in:

  34. Search for Evan E. Eichler in:

  35. Search for Ed S. Lein in:

  36. Search for Trygve E. Bakken in:

  37. Search for Liubov V. Golovanova in:

  38. Search for Vladimir B. Doronichev in:

  39. Search for Michael V. Shunkov in:

  40. Search for Anatoli P. Derevianko in:

  41. Search for Bence Viola in:

  42. Search for Montgomery Slatkin in:

  43. Search for David Reich in:

  44. Search for Janet Kelso in:

  45. Search for Svante Pääbo in:

Contributions

S.Saw., A.H. and Q.F. performed the experiments; K.P., F.R., N.P., F.J., S.San., S.Saw., A.H., G.R., P.H.S., C.d.F., M.D., Q.F., M.Ki., M.Ku., M.L., M.M., M.O., M.Si., C.T., H.L., S.M., A.T., P.M., J.P., J.C.M., S.H.V., R.E.G., I.H., P.L.F.J., J.O.K., J.S., E.E.E., E.S.L., T.E.B., M.Sl., D.R., J.K., and S.P. analysed genetic data; L.V.G., V.B.D., M.V.S., A.P.D. and B.V. analysed archaeological and anthropological data; H.B. and H.C. provided samples and reagents; K.P., J.K. and S.P. wrote and edited the manuscript with input from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Montgomery Slatkin or David Reich or Svante Pääbo.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Text, Tables and Figures – see contents page for details.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature12886

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.